Journal article
Authors list: Tyborski, C; Meinke, R; Gillen, R; Bischoff, T; Knecht, A; Richter, R; Merli, A; Fokin, AA; Koso, TV; Rodionov, VN; Schreiner, PR; Möller, T; Rander, T; Thomsen, C; Maultzsch, J
Publication year: 2017
Pages: 044303-
Journal: The Journal of Chemical Physics
Volume number: 147
Issue number: 4
DOI Link: https://doi.org/10.1063/1.4994898
Publisher: American Institute of Physics
The electronic properties of sp2/sp3 diamondoids in the crystalline state and in the gas phase are presented. Apparent differences in electronic properties experimentally observed by resonance Raman spectroscopy in the crystalline/gas phase and absorption measurements in the gas phase were investigated by density functional theory computations. Due to a reorganization of the molecular orbitals in the crystalline phase, the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energy gaps are lowered significantly by 0.5 eV–1 eV. The π → π*" role="presentation">π → π∗ transition is responsible for large absorption in both gas and crystalline phases. It further causes a large increase in the Raman intensity of the C=C stretch vibration when excited resonantly. By resonance Raman spectroscopy we were able to determine the C=C bond length of the trishomocubane dimer to exhibit 1.33 Å" role="presentation">1.33 Å in the ground and 1.41 Å" role="presentation">1.41 Å in the excited state.
Abstract:
Citation Styles
Harvard Citation style: Tyborski, C., Meinke, R., Gillen, R., Bischoff, T., Knecht, A., Richter, R., et al. (2017) From isolated diamondoids to a van-der-Waals crystal: A theoretical and experimental analysis of a trishomocubane and a diamantane dimer in the gas and solid phase, The Journal of Chemical Physics, 147(4), p. 044303. https://doi.org/10.1063/1.4994898
APA Citation style: Tyborski, C., Meinke, R., Gillen, R., Bischoff, T., Knecht, A., Richter, R., Merli, A., Fokin, A., Koso, T., Rodionov, V., Schreiner, P., Möller, T., Rander, T., Thomsen, C., & Maultzsch, J. (2017). From isolated diamondoids to a van-der-Waals crystal: A theoretical and experimental analysis of a trishomocubane and a diamantane dimer in the gas and solid phase. The Journal of Chemical Physics. 147(4), 044303. https://doi.org/10.1063/1.4994898