Journal article
Authors list: Korte, C; Peters, A; Janek, J; Hesse, D; Zakharov, N
Publication year: 2008
Pages: 4623-4635
Journal: Physical Chemistry Chemical Physics
Volume number: 10
Issue number: 31
ISSN: 1463-9076
eISSN: 1463-9084
DOI Link: https://doi.org/10.1039/b801675e
Publisher: Royal Society of Chemistry
Abstract:
The oxygen ion conductivity of YSZ (ZrO(2) + 9.5 mol% Y(2)O(3))/Y(2)O(3) multilayer systems is measured parallel to the interfaces as a function of temperature between 350 and 700 degrees C. The multilayer samples are prepared by pulsed laser deposition (PLD). The film thicknesses, the crystallinity, the texture and the microstructure are investigated by SEM, XRD, HRTEM and SAED. To separate the interface contribution of the total conductivity from the bulk contribution the thickness of the YSZ and Y(2)O(3) layers is varied systematically. The total conductivity of the YSZ films increases when their thickness is decreased from 0.53 mm to 24 nm. It depends linearly on the reciprocal thickness of the individual layers, thus on the number of YSZ/Y(2)O(3) interfaces. This behaviour results from the parallel connection between individual conduction paths in the bulk and the interfacial regions. The activation energy for the ionic conductivity decreases from 1.13 to 0.99 kJ mol(-1) by decreasing the thicknesses of the individual YSZ layers. HRTEM studies show that the YSZ/Y(2)O(3) interfaces are semicoherent. The correlation between interface structure and ionic conduction is discussed.
Citation Styles
Harvard Citation style: Korte, C., Peters, A., Janek, J., Hesse, D. and Zakharov, N. (2008) Ionic conductivity and activation energy for oxygen ion transport in superlattices - the semicoherent multilayer system YSZ (ZrO(2)+9.5 mol% Y(2)O(3))/Y(2)O(3), Physical Chemistry Chemical Physics, 10(31), pp. 4623-4635. https://doi.org/10.1039/b801675e
APA Citation style: Korte, C., Peters, A., Janek, J., Hesse, D., & Zakharov, N. (2008). Ionic conductivity and activation energy for oxygen ion transport in superlattices - the semicoherent multilayer system YSZ (ZrO(2)+9.5 mol% Y(2)O(3))/Y(2)O(3). Physical Chemistry Chemical Physics. 10(31), 4623-4635. https://doi.org/10.1039/b801675e