Journal article

Visualization of atomic processes on ruthenium dioxide using scanning tunneling microscopy


Authors listOver, H; Knapp, M; Lundgren, E; Seitsonen, AP; Schmid, M; Varga, P

Publication year2004

Pages167-174

JournalChemPhysChem

Volume number5

Issue number2

ISSN1439-4235

DOI Linkhttps://doi.org/10.1002/cphc.200300833

PublisherWiley


Abstract
The visualization of surface reactions on the atomic scale provides direct insight into the microscopic reaction steps taking place in a catalytic reaction at a (model) catalyst's surface. Employing the technique of scanning tunneling microscopy (STM), we investigated the CO oxidation reaction over the RuO2(110) and RuO2(100) surfaces. For both surfaces the protruding bridging O atoms are imaged in STM as bright features. The reaction mechanism is identical on both orientations of RuO2. CO molecules adsorb on the undercoordinated surface Ru atoms from where they recombine with undercoordinated O atoms to form CO2 at the oxide surface. In contrast to the RuO2(110) surface, the RuO2(100) surface stabilizes also a catalytically inactive c(2 x 2) surface phase onto which CO is not able to adsorb above 100 K. We argue that this inactive RuO2(100)-c(2 x 2) phase may play an important role in the deactivation of RuO2 catalysts in the electrochemical Cl2 evolution and other heterogeneous reactions.



Authors/Editors




Citation Styles

Harvard Citation styleOver, H., Knapp, M., Lundgren, E., Seitsonen, A., Schmid, M. and Varga, P. (2004) Visualization of atomic processes on ruthenium dioxide using scanning tunneling microscopy, ChemPhysChem, 5(2), pp. 167-174. https://doi.org/10.1002/cphc.200300833

APA Citation styleOver, H., Knapp, M., Lundgren, E., Seitsonen, A., Schmid, M., & Varga, P. (2004). Visualization of atomic processes on ruthenium dioxide using scanning tunneling microscopy. ChemPhysChem. 5(2), 167-174. https://doi.org/10.1002/cphc.200300833


Last updated on 2025-21-05 at 14:47