Journal article
Authors list: Shechter, D; Dormann, HL; Allis, CD; Hake, SB
Publication year: 2007
Pages: 1445-1457
Journal: Nature Protocols
Volume number: 2
Issue number: 6
ISSN: 1754-2189
DOI Link: https://doi.org/10.1038/nprot.2007.202
Publisher: Nature Research
Abstract:
Histone proteins are the major protein components of chromatin, the physiologically relevant form of the genome (or epigenome) in all eukaryotic cells. Chromatin is the substrate of many biological processes, such as gene regulation and transcription, replication, mitosis and apoptosis. Since histones are extensively post-translationally modified, the identification of these covalent marks on canonical and variant histones is crucial for the understanding of their biological significance. Many different biochemical techniques have been developed to purify and separate histone proteins. Here, we present standard protocols for acid extraction and salt extraction of histones from chromatin; separation of extracted histones by reversed-phase HPLC; analysis of histones and their specific post-translational modification profiles by acid urea (AU) gel electrophoresis and the additional separation of non-canonical histone variants by triton AU(TAU) and 2D TAU electrophoresis; and immunoblotting of isolated histone proteins with modification-specific antibodies.
Citation Styles
Harvard Citation style: Shechter, D., Dormann, H., Allis, C. and Hake, S. (2007) Extraction, purification and analysis of histones, Nature Protocols, 2(6), pp. 1445-1457. https://doi.org/10.1038/nprot.2007.202
APA Citation style: Shechter, D., Dormann, H., Allis, C., & Hake, S. (2007). Extraction, purification and analysis of histones. Nature Protocols. 2(6), 1445-1457. https://doi.org/10.1038/nprot.2007.202