Journal article

Two-Dimensional Layered Heterojunctions for Photoelectrocatalysis


Authors listWang, Mengjiao; Langer, Michal; Altieri, Roberto; Crisci, Matteo; Osella, Silvio; Gatti, Teresa

Publication year2024

Pages9245-9284

JournalACS Nano

Volume number18

Issue number13

ISSN1936-0851

eISSN1936-086X

DOI Linkhttps://doi.org/10.1021/acsnano.3c12274

PublisherAmerican Chemical Society


Abstract
Two-dimensional (2D) layered nanomaterial heterostructures, arising from the combination of 2D materials with other low-dimensional species, feature a large surface area to volume ratio, which provides a high density of active sites for catalytic applications and for (photo)electrocatalysis (PEC). Meanwhile, their electronic band structure and high electrical conductivity enable efficient charge transfer (CT) between the active material and the substrate, which is essential for catalytic activity. In recent years, researchers have demonstrated the potential of a range of 2D material interfaces, such as graphene, graphitic carbon nitride (g-C3N4), metal chalcogenides (MCs), and MXenes, for (photo)electrocatalytic applications. For instance, MCs such as MoS2 and WS2 have shown excellent catalytic activity for hydrogen evolution, while graphene and MXenes have been used for the reduction of carbon dioxide to higher value chemicals. However, despite their great potential, there are still major challenges that need to be addressed to fully realize the potential of 2D materials for PEC. For example, their stability under harsh reaction conditions, as well as their scalability for large-scale production are important factors to be considered. Generating heterojunctions (HJs) by combining 2D layered structures with other nanomaterials is a promising method to improve the photoelectrocatalytic properties of the former. In this review, we inspect thoroughly the recent literature, to demonstrate the significant potential that arises from utilizing 2D layered heterostructures in PEC processes across a broad spectrum of applications, from energy conversion and storage to environmental remediation. With the ongoing research and development, it is likely that the potential of these materials will be fully expressed in the near future.



Citation Styles

Harvard Citation styleWang, M., Langer, M., Altieri, R., Crisci, M., Osella, S. and Gatti, T. (2024) Two-Dimensional Layered Heterojunctions for Photoelectrocatalysis, ACS Nano, 18(13), pp. 9245-9284. https://doi.org/10.1021/acsnano.3c12274

APA Citation styleWang, M., Langer, M., Altieri, R., Crisci, M., Osella, S., & Gatti, T. (2024). Two-Dimensional Layered Heterojunctions for Photoelectrocatalysis. ACS Nano. 18(13), 9245-9284. https://doi.org/10.1021/acsnano.3c12274



Keywords


2D layered nanostructures2D material synthesisARTIFICIAL PHOTOSYNTHESIScharge transferCO2 REDUCTIONcomputational modulationDENSITY-FUNCTIONAL THEORYDOUBLE HYDROXIDEELASTIC BAND METHODENHANCED PHOTOELECTROCHEMICAL PERFORMANCEheterojunctionsIN-SITU CONSTRUCTIONlight energy conversionPHOTOCATALYTIC ACTIVITYphotoelectrocatalysisphotoelectrochemical applications

Last updated on 2025-01-04 at 22:52