Journalartikel
Autorenliste: Loetzsch, R.; Beyer, H. F.; Duval, L.; Spillmann, U.; Banas, D.; Dergham, P.; Kroeger, F. M.; Glorius, J.; Grisenti, R. E.; Guerra, M.; Gumberidze, A.; Hess, R.; Hillenbrand, P. -m.; Indelicato, P.; Jagodzinski, P.; Lamour, E.; Lorentz, B.; Litvinov, S.; Litvinov, Yu. A.; Machado, J.; Paul, N.; Paulus, G. G.; Petridis, N.; Santos, J. P.; Scheidel, M.; Sidhu, R. S.; Steck, M.; Steydli, S.; Szary, K.; Trotsenko, S.; Uschmann, I.; Weber, G.; Stoehlker, Th.; Trassinelli, M.
Jahr der Veröffentlichung: 2024
Zeitschrift: Nature
Bandnummer: 625
Heftnummer: 7996
ISSN: 0028-0836
eISSN: 1476-4687
Open Access Status: Hybrid
DOI Link: https://doi.org/10.1038/s41586-023-06910-y
Verlag: Nature Research
Quantum electrodynamics (QED), the quantum field theory that describes the interaction between light and matter, is commonly regarded as the best-tested quantum theory in modern physics. However, this claim is mostly based on extremely precise studies performed in the domain of relatively low field strengths and light atoms and ions1-6. In the realm of very strong electromagnetic fields such as in the heaviest highly charged ions (with nuclear charge Z >> 1), QED calculations enter a qualitatively different, non-perturbative regime. Yet, the corresponding experimental studies are very challenging, and theoretical predictions are only partially tested. Here we present an experiment sensitive to higher-order QED effects and electron-electron interactions in the high-Z regime. This is achieved by using a multi-reference method based on Doppler-tuned X-ray emission from stored relativistic uranium ions with different charge states. The energy of the 1s1/22p3/2 J = 2 -> 1s1/22s1/2 J = 1 intrashell transition in the heaviest two-electron ion (U90+) is obtained with an accuracy of 37 ppm. Furthermore, a comparison of uranium ions with different numbers of bound electrons enables us to disentangle and to test separately the one-electron higher-order QED effects and the bound electron-electron interaction terms without the uncertainty related to the nuclear radius. Moreover, our experimental result can discriminate between several state-of-the-art theoretical approaches and provides an important benchmark for calculations in the strong-field domain. An experiment sensitive to higher-order quantum electrodynamics effects and electron-electron interactions in the high-Z regime was performed using a multi-reference method based on Doppler-tuned X-ray emission from stored relativistic uranium ions with different charge states.
Abstract:
Zitierstile
Harvard-Zitierstil: Loetzsch, R., Beyer, H., Duval, L., Spillmann, U., Banas, D., Dergham, P., et al. (2024) Testing quantum electrodynamics in extreme fields using helium-like uranium, Nature, 625(7996). https://doi.org/10.1038/s41586-023-06910-y
APA-Zitierstil: Loetzsch, R., Beyer, H., Duval, L., Spillmann, U., Banas, D., Dergham, P., Kroeger, F., Glorius, J., Grisenti, R., Guerra, M., Gumberidze, A., Hess, R., Hillenbrand, P., Indelicato, P., Jagodzinski, P., Lamour, E., Lorentz, B., Litvinov, S., Litvinov, Y., ...Trassinelli, M. (2024). Testing quantum electrodynamics in extreme fields using helium-like uranium. Nature. 625(7996). https://doi.org/10.1038/s41586-023-06910-y
Schlagwörter
LAMB-SHIFT; MULTICONFIGURATION DIRAC-FOCK; NUCLEAR-POLARIZATION CONTRIBUTION; QED CORRECTIONS; TRANSITION ENERGIES