Journalartikel

On the chromatic number of some generalized Kneser graphs


AutorenlisteD'haeseleer, Jozefien; Metsch, Klaus; Werner, Daniel

Jahr der Veröffentlichung2023

Seiten179-204

ZeitschriftJournal of Combinatorial Designs

Bandnummer31

Heftnummer4

ISSN1063-8539

eISSN1520-6610

Open Access StatusGreen

DOI Linkhttps://doi.org/10.1002/jcd.21875

VerlagWiley


Abstract
We determine the chromatic number of the Kneser graph q Gamma 7,{3,4} $q{{\rm{\Gamma }}}_{7,\{3,4\}}$ of flags of vectorial type {3,4} $\{3,4\}$ of a rank 7 vector space over the finite field GF(q) $\mathrm{GF}(q)$ for large q $q$ and describe the colorings that attain the bound. This result relies heavily, not only on the independence number, but also on the structure of all large independent sets. Furthermore, our proof is more general in the following sense: it provides the chromatic number of the Kneser graphs q Gamma 2d+1,{d,d+1} $q{{\rm{\Gamma }}}_{2d+1,\{d,d+1\}}$ of flags of vectorial type {d,d+1} $\{d,d+1\}$ of a rank 2d+1 $2d+1$ vector space over GF(q) $\mathrm{GF}(q)$ for large q $q$ as long as the large independent sets of the graphs are only the ones that are known.



Zitierstile

Harvard-ZitierstilD'haeseleer, J., Metsch, K. and Werner, D. (2023) On the chromatic number of some generalized Kneser graphs, Journal of Combinatorial Designs, 31(4), pp. 179-204. https://doi.org/10.1002/jcd.21875

APA-ZitierstilD'haeseleer, J., Metsch, K., & Werner, D. (2023). On the chromatic number of some generalized Kneser graphs. Journal of Combinatorial Designs. 31(4), 179-204. https://doi.org/10.1002/jcd.21875



Schlagwörter


chromatic numberq-analog of generalized Kneser graph


Nachhaltigkeitsbezüge


Zuletzt aktualisiert 2025-10-06 um 11:49