Journalartikel

Inhomogeneous affine Volterra processes


AutorenlisteAckermann, Julia; Kruse, Thomas; Overbeck, Ludger

Jahr der Veröffentlichung2022

Seiten250-279

ZeitschriftStochastic Processes and their Applications

Bandnummer150

ISSN0304-4149

eISSN1879-209X

Open Access StatusGreen

DOI Linkhttps://doi.org/10.1016/j.spa.2022.04.011

VerlagElsevier


Abstract
We extend recent results on affine Volterra processes to the inhomogeneous case. This includes moment bounds of solutions of Volterra equations driven by a Brownian motion with an inhomogeneous kernel K(t, s) and inhomogeneous drift and diffusion coefficients b(s, X-s) and sigma(s, X-s). In the case of affine b and sigma sigma(T) we show how the conditional Fourier-Laplace functional can be represented by a solution of an inhomogeneous Riccati-Volterra integral equation. For a kernel of convolution type K(t, s) = K(t - s) we establish existence of a solution to the stochastic inhomogeneous Volterra equation. If in addition b and sigma sigma(T) are affine, we prove that the conditional Fourier-Laplace functional is exponential-affine in the past path. Finally, we apply these results to an inhomogeneous extension of the rough Heston model used in mathematical finance. (C) 2022 Elsevier B.V. All rights reserved.



Zitierstile

Harvard-ZitierstilAckermann, J., Kruse, T. and Overbeck, L. (2022) Inhomogeneous affine Volterra processes, Stochastic Processes and their Applications, 150, pp. 250-279. https://doi.org/10.1016/j.spa.2022.04.011

APA-ZitierstilAckermann, J., Kruse, T., & Overbeck, L. (2022). Inhomogeneous affine Volterra processes. Stochastic Processes and their Applications. 150, 250-279. https://doi.org/10.1016/j.spa.2022.04.011



Schlagwörter


STOCHASTIC VOLATILITY

Zuletzt aktualisiert 2025-10-06 um 11:40