Journal article

Phase Control of Multivalent Vanadium Oxides VO x by Ion-Beam Sputter-Deposition


Authors listBecker, Martin; Kessler, Jill; Kuhl, Florian; Benz, Sebastian L.; Chen, Limei; Polity, Angelika; Klar, Peter J.; Chatterjee, Sangam

Publication year2022

Journalphysica status solidi (a) – applications and materials science

Volume number219

Issue number9

ISSN1862-6300

eISSN1862-6319

Open access statusHybrid

DOI Linkhttps://doi.org/10.1002/pssa.202100828

PublisherWiley


Abstract
Vanadium-oxygen materials are of interest for various applications and fields of solid-state physics owing to the unequaled plethora of different phases. The wealth of phases and complexity of its phase diagram infer a strong sensitivity on the growth parameters for each phase. Thus, the reproducible growth of vanadium-oxide thin-films of defined phases by nonequilibrium techniques is challenging. Here, it is shown that ion-beam sputter-deposition (IBSD) is a powerful tool to reproducibly deposit defined polycrystalline vanadium oxide films by precisely controlling oxygen flux and substrate temperature in the growth process. Hence, it is demonstrated that IBSD has the potential to reliably produce binary phases (including unstable phases) from the vanadium-oxygen phase space. X-ray diffraction (XRD) and Raman spectroscopy are used to establish a map of the different crystalline phases dependent on the growth parameters. In particular, it is proved that thin-film V3O7 can be realized by IBSD and its Raman fingerprint is unambiguously identified.



Citation Styles

Harvard Citation styleBecker, M., Kessler, J., Kuhl, F., Benz, S., Chen, L., Polity, A., et al. (2022) Phase Control of Multivalent Vanadium Oxides VO x by Ion-Beam Sputter-Deposition, physica status solidi (a) – applications and materials science, 219(9), Article 2100828. https://doi.org/10.1002/pssa.202100828

APA Citation styleBecker, M., Kessler, J., Kuhl, F., Benz, S., Chen, L., Polity, A., Klar, P., & Chatterjee, S. (2022). Phase Control of Multivalent Vanadium Oxides VO x by Ion-Beam Sputter-Deposition. physica status solidi (a) – applications and materials science. 219(9), Article 2100828. https://doi.org/10.1002/pssa.202100828



Keywords


growth regimesIon beam sputter depositionLITHIUM STORAGEMETAL-INSULATOR-TRANSITIONV2O5V6O13vanadium oxides

Last updated on 2025-10-06 at 11:37