Journal article

The interplay between (electro)chemical and (chemo)mechanical effects in the cycling performance of thiophosphate-based solid-state batteries


Authors listTeo, Jun Hao; Strauss, Florian; Walther, Felix; Ma, Yuan; Payandeh, Seyedhosein; Scherer, Torsten; Bianchini, Matteo; Janek, Juergen; Brezesinski, Torsten

Publication year2022

JournalMaterials Futures

Volume number1

Issue number1

eISSN2752-5724

Open access statusGold

DOI Linkhttps://doi.org/10.1088/2752-5724/ac3897

PublisherIOP Publishing


Abstract

Solid-state batteries (SSBs) are a promising next step in electrochemical energy storage but are plagued by a number of problems. In this study, we demonstrate the recurring issue of mechanical degradation because of volume changes in layered Ni-rich oxide cathode materials in thiophosphate-based SSBs. Specifically, we explore superionic solid electrolytes (SEs) of different crystallinity, namely glassy 1.5Li2S-0.5P2S5-LiI and argyrodite Li6PS5Cl, with emphasis on how they affect the cyclability of slurry-cast cathodes with NCM622 (60% Ni) or NCM851005 (85% Ni). The application of a combination of ex situ and in situ analytical techniques helped to reveal the benefits of using a SE with a low Young's modulus. Through a synergistic interplay of (electro)chemical and (chemo)mechanical effects, the glassy SE employed in this work was able to achieve robust and stable interfaces, enabling intimate contact with the cathode material while at the same time mitigating volume changes. Our results emphasize the importance of considering chemical, electrochemical, and mechanical properties to realize long-term cycling performance in high-loading SSBs.

Video Abstract: The interplay between (electro)chemical and (chemo)mechanical effects in the cycling performance of thiophosphate-based solid-state batteries




Citation Styles

Harvard Citation styleTeo, J., Strauss, F., Walther, F., Ma, Y., Payandeh, S., Scherer, T., et al. (2022) The interplay between (electro)chemical and (chemo)mechanical effects in the cycling performance of thiophosphate-based solid-state batteries, Materials Futures, 1(1), Article 015102. https://doi.org/10.1088/2752-5724/ac3897

APA Citation styleTeo, J., Strauss, F., Walther, F., Ma, Y., Payandeh, S., Scherer, T., Bianchini, M., Janek, J., & Brezesinski, T. (2022). The interplay between (electro)chemical and (chemo)mechanical effects in the cycling performance of thiophosphate-based solid-state batteries. Materials Futures. 1(1), Article 015102. https://doi.org/10.1088/2752-5724/ac3897



Keywords


lithium thiophosphate electrolyteslurry casting

Last updated on 2025-10-06 at 11:59