Journalartikel
Autorenliste: Spreda, Miriam; Hauptmann, Nicole; Lehner, Veronika; Biehl, Christoph; Liefeith, Klaus; Lips, Katrin Susanne
Jahr der Veröffentlichung: 2021
Zeitschrift: Molecules
Bandnummer: 26
Heftnummer: 20
eISSN: 1420-3049
Open Access Status: Gold
DOI Link: https://doi.org/10.3390/molecules26206258
Verlag: MDPI
Abstract:
In the context of an aging population, unhealthy Western lifestyle, and the lack of an optimal surgical treatment, deep osteochondral defects pose a great challenge for the public health system. Biodegradable, biomimetic scaffolds seem to be a promising solution. In this study we investigated the biocompatibility of porous poly-((D,L)-lactide-epsilon-caprolactone)dimethacrylate (LCM) scaffolds in contrast to compact LCM scaffolds and blank cell culture plastic. Thus, morphology, cytotoxicity and metabolic activity of human mesenchymal stromal cells (MSC) seeded directly on the materials were analyzed after three and six days of culturing. Further, osteoclastogenesis and osteoclastic activity were assessed using reverse-transcriptase real-time PCR of osteoclast-specific genes, EIA and morphologic aspects after four, eight, and twelve days. LCM scaffolds did not display cytotoxic effects on MSC. After three days, metabolic activity of MSC was enhanced on 3D porous scaffolds (PS) compared to 2D compact scaffolds (CS). Osteoclast activity seemed to be reduced at PS compared to cell culture plastic at all time points, while no differences in osteoclastogenesis were detectable between the materials. These results indicate a good cytocompatibility of LCM scaffolds. Interestingly, porous 3D structure induced higher metabolic activity of MSC as well as reduced osteoclast activity.
Zitierstile
Harvard-Zitierstil: Spreda, M., Hauptmann, N., Lehner, V., Biehl, C., Liefeith, K. and Lips, K. (2021) Porous 3D Scaffolds Enhance MSC Vitality and Reduce Osteoclast Activity, Molecules, 26(20), Article 6258. https://doi.org/10.3390/molecules26206258
APA-Zitierstil: Spreda, M., Hauptmann, N., Lehner, V., Biehl, C., Liefeith, K., & Lips, K. (2021). Porous 3D Scaffolds Enhance MSC Vitality and Reduce Osteoclast Activity. Molecules. 26(20), Article 6258. https://doi.org/10.3390/molecules26206258
Schlagwörter
3D-printing; 5B; BONE-RESORPTION; CARTILAGE; IMPLANT; MARKER; MESENCHYMAL STEM-CELLS; MESENCHYMAL STROMAL CELLS; mRNA expression; OSTEOBLAST; OSTEOCLASTS; poly-lactide-caprolactone; tartrate-resistant acid phosphatase; TISSUE REGENERATION