Journalartikel

Strictly positive definite kernels on the 2-sphere: from radial symmetry to eigenvalue block structure


AutorenlisteBuhmann, Martin; Jaeger, Janin

Jahr der Veröffentlichung2022

Seiten1500-1525

ZeitschriftIMA Journal of Numerical Analysis

Bandnummer42

Heftnummer2

ISSN0272-4979

eISSN1464-3642

Open Access StatusGreen

DOI Linkhttps://doi.org/10.1093/imanum/drab012

VerlagOxford University Press


Abstract
The paper introduces a new characterization of strict positive definiteness for kernels on the 2-sphere without assuming the kernel to be radially (isotropic) or axially symmetric. The results use the series expansion of the kernel in spherical harmonics. Then additional sufficient conditions are proven for kernels with a block structure of expansion coefficients. These generalize the result derived by Chen et al. (2003, A necessary and sufficient condition for strictly positive definite functions on spheres. Proc. Amer. Math. Soc., 131, 2733-2740) for radial kernels to nonradial kernels.



Zitierstile

Harvard-ZitierstilBuhmann, M. and Jaeger, J. (2022) Strictly positive definite kernels on the 2-sphere: from radial symmetry to eigenvalue block structure, IMA Journal of Numerical Analysis, 42(2), pp. 1500-1525. https://doi.org/10.1093/imanum/drab012

APA-ZitierstilBuhmann, M., & Jaeger, J. (2022). Strictly positive definite kernels on the 2-sphere: from radial symmetry to eigenvalue block structure. IMA Journal of Numerical Analysis. 42(2), 1500-1525. https://doi.org/10.1093/imanum/drab012



Schlagwörter


2-sphereCovariance functionsSPACESStrictly positive definite kernels


Nachhaltigkeitsbezüge


Zuletzt aktualisiert 2025-10-06 um 11:36