Journalartikel
Autorenliste: Buhmann, Martin; Jaeger, Janin
Jahr der Veröffentlichung: 2022
Seiten: 1500-1525
Zeitschrift: IMA Journal of Numerical Analysis
Bandnummer: 42
Heftnummer: 2
ISSN: 0272-4979
eISSN: 1464-3642
Open Access Status: Green
DOI Link: https://doi.org/10.1093/imanum/drab012
Verlag: Oxford University Press
Abstract:
The paper introduces a new characterization of strict positive definiteness for kernels on the 2-sphere without assuming the kernel to be radially (isotropic) or axially symmetric. The results use the series expansion of the kernel in spherical harmonics. Then additional sufficient conditions are proven for kernels with a block structure of expansion coefficients. These generalize the result derived by Chen et al. (2003, A necessary and sufficient condition for strictly positive definite functions on spheres. Proc. Amer. Math. Soc., 131, 2733-2740) for radial kernels to nonradial kernels.
Zitierstile
Harvard-Zitierstil: Buhmann, M. and Jaeger, J. (2022) Strictly positive definite kernels on the 2-sphere: from radial symmetry to eigenvalue block structure, IMA Journal of Numerical Analysis, 42(2), pp. 1500-1525. https://doi.org/10.1093/imanum/drab012
APA-Zitierstil: Buhmann, M., & Jaeger, J. (2022). Strictly positive definite kernels on the 2-sphere: from radial symmetry to eigenvalue block structure. IMA Journal of Numerical Analysis. 42(2), 1500-1525. https://doi.org/10.1093/imanum/drab012
Schlagwörter
2-sphere; Covariance functions; SPACES; Strictly positive definite kernels