Journalartikel

The Ranges of Accepting State Complexities of Languages Resulting from Some Operations


AutorenlisteHospodar, Michal; Holzer, Markus

Jahr der Veröffentlichung2020

Seiten1159-1177

ZeitschriftInternational Journal of Foundations of Computer Science

Bandnummer31

Heftnummer8

ISSN0129-0541

eISSN1793-6373

DOI Linkhttps://doi.org/10.1142/S0129054120420083

VerlagWorld Scientific Publishing


Abstract
We examine the accepting state complexity, i.e., the minimal number of accepting states of deterministic finite automata for languages resulting from unary and binary operations on languages with accepting state complexity given as a parameter. This is a continuation of the work of [J. Dassow: On the number of accepting states of finite automata, J. Autom., Lang. Comb., 21, 2016]. We solve most of the open problems mentioned thereof. In particular, we consider the operations of intersection, symmetric difference, right and left quotients, reversal, and permutation (on finite languages), where we obtain precise ranges of accepting state complexities. We also consider symmetric difference on unary finite languages where we obtain a non-contiguous range of accepting state complexities.



Zitierstile

Harvard-ZitierstilHospodar, M. and Holzer, M. (2020) The Ranges of Accepting State Complexities of Languages Resulting from Some Operations, International Journal of Foundations of Computer Science, 31(8), pp. 1159-1177. https://doi.org/10.1142/S0129054120420083

APA-ZitierstilHospodar, M., & Holzer, M. (2020). The Ranges of Accepting State Complexities of Languages Resulting from Some Operations. International Journal of Foundations of Computer Science. 31(8), 1159-1177. https://doi.org/10.1142/S0129054120420083



Schlagwörter


accepting statesDESCRIPTIONAL COMPLEXITYdeterministic automataMAGIC NUMBERSMinimal automatanondeterministic automataREGULAR LANGUAGES


Nachhaltigkeitsbezüge


Zuletzt aktualisiert 2025-02-04 um 00:33