Journal article
Authors list: Uredat, Patrick; Kodaira, Ryutaro; Horiuchi, Ryoma; Hara, Shinjiro; Beyer, Andreas; Volz, Kerstin; Klar, Peter J.; Elm, Matthias T.
Publication year: 2020
Pages: 618-624
Journal: Nano Letters
Volume number: 20
Issue number: 1
ISSN: 1530-6984
eISSN: 1530-6992
DOI Link: https://doi.org/10.1021/acs.nanolett.9b04383
Publisher: American Chemical Society
Abstract:
We study the magnetotransport properties of single InAs nanowires grown by selective-area metal-organic vapor-phase epitaxy. The semiconducting InAs nanowires exhibit a large positive ordinary magnetoresistance effect. However, a deviation from the corresponding quadratic behavior is observed for an orientation of the applied magnetic field perpendicular to the nanowire axis. This additional contribution to the magnetoresistance can be explained by diffuse boundary scattering of free carriers in the InAs nanowire and results in a reduction of the charge carrier mobility. As a consequence, angle-dependent magnetotransport measurements reveal a highly anomalous behavior. Numerical simulations have been conducted to further investigate the effect of classical boundary scattering in the nanowires. On the basis of the numerical simulations, an empirical description is derived, which yields excellent agreement with the experimental data and allows one to quantify the contribution of boundary scattering to the magnetoresistance effect.
Citation Styles
Harvard Citation style: Uredat, P., Kodaira, R., Horiuchi, R., Hara, S., Beyer, A., Volz, K., et al. (2020) Anomalous Angle-Dependent Magnetotransport Properties of Single InAs Nanowires, Nano Letters, 20(1), pp. 618-624. https://doi.org/10.1021/acs.nanolett.9b04383
APA Citation style: Uredat, P., Kodaira, R., Horiuchi, R., Hara, S., Beyer, A., Volz, K., Klar, P., & Elm, M. (2020). Anomalous Angle-Dependent Magnetotransport Properties of Single InAs Nanowires. Nano Letters. 20(1), 618-624. https://doi.org/10.1021/acs.nanolett.9b04383
Keywords
angle dependence; BOUNDARY SCATTERING; electrical transport; ELECTRON-MOBILITY; InAs nanowire; magnetotransport