Journal article

Anaerobic treatment of residuals from tanks transporting food and fodder


Authors listVan Than Nguyen; Beyer, Erik; Neumann, Jan; Awe, Dirk; Pfeiffer, Wolfgang; Traenckner, Jens

Publication year2019

Pages32698-32707

JournalEnvironmental Science and Pollution Research

Volume number26

Issue number32

ISSN0944-1344

eISSN1614-7499

Open access statusHybrid

DOI Linkhttps://doi.org/10.1007/s11356-018-3876-z

PublisherSpringer


Abstract
The anaerobic digestion of wastewater from the cleaning of tank cars transporting food and fodder was investigated in both bench and pilot scales with a single-stage, mesophilic (39 degrees C), completely mixed process. The promising results lead to the planning and building of a 1200-m(3) full-scale biogas plant at TS-Clean cleaning station in Fahrbinde, Germany. Due to softened water used in the cleaning of the car tanks, the alkalinity in the digester decreased as predicted by the physicochemical model developed for this treatment process. The model showed that 2.4 kg NaHCO3/m(3) of wastewater has to be added in order to control digester pH at 7.2 and to maintain the digester alkalinity at 3.1 g CaCO3/L. In a laboratory study, the decrease of alkalinity caused a volatile organic acids accumulation and pH drop below the optimal range. In this case, if chemical buffering was not added into the digester, the digester deteriorated. In a 3-year investigation, we confirmed that the strongly polluted WW from the cleaning of tank cars transporting food and fodder is suitable for an anaerobic treatment if the organic loading rate is controlled below 4 kg COD/m(3)/day, digester alkalinity is adjusted by NaHCO3, and micronutrients are added despite constant considerable variations in strength and composition of the wastewater. A biogas yield of 35-45 m(3) CH4/m(3) of wastewater and a COD elimination of 80-90% were achieved in bench- and pilot-scale experiments and are achieved in the full-scale biogas plant. The full-scale biogas plant is working stable with a biogas yield of 68 m(3) biogas/m(3) of wastewater.



Citation Styles

Harvard Citation styleVan Than Nguyen, Beyer, E., Neumann, J., Awe, D., Pfeiffer, W. and Traenckner, J. (2019) Anaerobic treatment of residuals from tanks transporting food and fodder, Environmental Science and Pollution Research, 26(32), pp. 32698-32707. https://doi.org/10.1007/s11356-018-3876-z

APA Citation styleVan Than Nguyen, Beyer, E., Neumann, J., Awe, D., Pfeiffer, W., & Traenckner, J. (2019). Anaerobic treatment of residuals from tanks transporting food and fodder. Environmental Science and Pollution Research. 26(32), 32698-32707. https://doi.org/10.1007/s11356-018-3876-z



Keywords


Anaerobic treatmentDIGESTION PROCESSEARLY WARNING INDICATORSPhysiochemical model of anaerobic digestionPROCESS FAILUREREACTORTRACE-ELEMENT SUPPLEMENTATIONwasteWastewater from the cleaning of tank cars transporting food and fodder

Last updated on 2025-10-06 at 11:06