Journalartikel

Deep Learning Reveals Cancer Metastasis and Therapeutic Antibody Targeting in the Entire Body


AutorenlistePan, Chenchen; Schoppe, Oliver; Parra-Damas, Arnaldo; Cai, Ruiyao; Todorov, Mihail Ivilinov; Gondi, Gabor; von Neubeck, Bettina; Boeguercue-Seidel, Nuray; Seidel, Sascha; Sleiman, Katia; Veltkamp, Christian; Foerstera, Benjamin; Mai, Hongcheng; Rong, Zhouyi; Trompak, Omelyan; Ghasemigharagoz, Alireza; Reimer, Madita Alice; Cuesta, Angel M.; Coronel, Javier; Jeremias, Irmela; Saur, Dieter; Acker-Palmer, Amparo; Acker, Till; Garvalov, Boyan K.; Menze, Bjoern; Zeidler, Reinhard; Ertuerk, Ali

Jahr der Veröffentlichung2019

Seiten1661-166+

ZeitschriftCell

Bandnummer179

Heftnummer7

ISSN0092-8674

eISSN1097-4172

Open Access StatusGreen

DOI Linkhttps://doi.org/10.1016/j.cell.2019.11.013

VerlagElsevier


Abstract
Reliable detection of disseminated tumor cells and of the biodistribution of tumor-targeting therapeutic antibodies within the entire body has long been needed to better understand and treat cancer metastasis. Here, we developed an integrated pipeline for automated quantification of cancer metastases and therapeutic antibody targeting, named DeepMACT. First, we enhanced the fluorescent signal of cancer cells more than 100-fold by applying the vDISCO method to image metastasis in transparent mice. Second, we developed deep learning algorithms for automated quantification of metastases with an accuracy matching human expert manual annotation. Deep learning-based quantification in 5 different metastatic cancer models including breast, lung, and pancreatic cancer with distinct organotropisms allowed us to systematically analyze features such as size, shape, spatial distribution, and the degree to which metastases are targeted by a therapeutic monoclonal antibody in entire mice. DeepMACT can thus considerably improve the discovery of effective antibody-based therapeutics at the preclinical stage.



Zitierstile

Harvard-ZitierstilPan, C., Schoppe, O., Parra-Damas, A., Cai, R., Todorov, M., Gondi, G., et al. (2019) Deep Learning Reveals Cancer Metastasis and Therapeutic Antibody Targeting in the Entire Body, Cell, 179(7), pp. 1661-166+. https://doi.org/10.1016/j.cell.2019.11.013

APA-ZitierstilPan, C., Schoppe, O., Parra-Damas, A., Cai, R., Todorov, M., Gondi, G., von Neubeck, B., Boeguercue-Seidel, N., Seidel, S., Sleiman, K., Veltkamp, C., Foerstera, B., Mai, H., Rong, Z., Trompak, O., Ghasemigharagoz, A., Reimer, M., Cuesta, A., Coronel, J., ...Ertuerk, A. (2019). Deep Learning Reveals Cancer Metastasis and Therapeutic Antibody Targeting in the Entire Body. Cell. 179(7), 1661-166+. https://doi.org/10.1016/j.cell.2019.11.013



Schlagwörter


ORGANSPANCREATIC-CANCERSINGLE-CELL RESOLUTION


Nachhaltigkeitsbezüge


Zuletzt aktualisiert 2025-10-06 um 11:06