Journal article
Authors list: Korzhik, Mikhail; Alenkov, Vladimir; Buzanov, Oleg; Fedorov, Andrei; Dosovitskiy, Georgy; Grigorjeva, Larisa; Mechinsky, Vitaliy; Sokolov, Peter; Tratsiak, Yauhen; Zolotarjovs, Aleksejs; Dormenev, Valery; Dosovitskiy, Aleksei; Agrawal, Devesh; Anniyev, Toyli; Vasilyev, Maxim; Khabashesku, Valery
Publication year: 2019
Journal: Crystal Research & Technology
Volume number: 54
Issue number: 4
ISSN: 0232-1300
eISSN: 1521-4079
Open access status: Green
DOI Link: https://doi.org/10.1002/crat.201800172
Publisher: Wiley
Abstract:
The search for engineering approaches to improve the scintillation properties of Gd3Al2Ga3O12 crystals and enable their production technology is of current interest. This crystal, while doped with Ce, is considered a good multi-purpose scintillation material for detecting gamma-quanta and neutrons. It is observed that co-doping with Mg affected intrinsic defects in the crystal structure that create shallow electronic traps. Other point structure defects, which are based on local variations of the crystal stoichiometry, are significantly diminished by use of a co-precipitated raw material. Nano-structuring of the raw material enables production of a homogeneous precursor mixture for growing a crystal with minimal evaporation of Ga from the melt. The demonstrated nano-engineering approach increased the light yield from the crystal by approximately 20%, enabling its applications in well logging.
Citation Styles
Harvard Citation style: Korzhik, M., Alenkov, V., Buzanov, O., Fedorov, A., Dosovitskiy, G., Grigorjeva, L., et al. (2019) Nanoengineered Gd3Al2Ga3O12 Scintillation Materials with Disordered Garnet Structure for Novel Detectors of Ionizing Radiation, Crystal Research & Technology, 54(4), Article 1800172. https://doi.org/10.1002/crat.201800172
APA Citation style: Korzhik, M., Alenkov, V., Buzanov, O., Fedorov, A., Dosovitskiy, G., Grigorjeva, L., Mechinsky, V., Sokolov, P., Tratsiak, Y., Zolotarjovs, A., Dormenev, V., Dosovitskiy, A., Agrawal, D., Anniyev, T., Vasilyev, M., & Khabashesku, V. (2019). Nanoengineered Gd3Al2Ga3O12 Scintillation Materials with Disordered Garnet Structure for Novel Detectors of Ionizing Radiation. Crystal Research & Technology. 54(4), Article 1800172. https://doi.org/10.1002/crat.201800172
Keywords
AL; co-precipitation; disordered crystal; GA; IMPROVEMENT; LUMINESCENCE RISE-TIME; multicomponent garnet; nanoengineering; scintillators