Journal article

Numerical analytic continuation of Euclidean data


Authors listTripolt, Ralf-Arno; Gubler, Philipp; Ulybyshev, Maksim; von Smekal, Lorenz

Publication year2019

Pages129-142

JournalComputer Physics Communications

Volume number237

ISSN0010-4655

eISSN1879-2944

DOI Linkhttps://doi.org/10.1016/j.cpc.2018.11.012

PublisherElsevier


Abstract
In this work we present a direct comparison of three different numerical analytic continuation methods: the Maximum Entropy Method, the Backus-Gilbert method and the Schlessinger point or Resonances Via Rade method. First, we perform a benchmark test based on a model spectral function and study the regime of applicability of these methods depending on the number of input points and their statistical error. We then apply these methods to more realistic examples, namely to numerical data on Euclidean propagators obtained from a Functional Renormalization Group calculation, to data from a lattice Quantum Chromodynamics simulation and to data obtained from a tight-binding model for graphene in order to extract the electrical conductivity. (C) 2018 Elsevier B.V. All rights reserved.



Citation Styles

Harvard Citation styleTripolt, R., Gubler, P., Ulybyshev, M. and von Smekal, L. (2019) Numerical analytic continuation of Euclidean data, Computer Physics Communications, 237, pp. 129-142. https://doi.org/10.1016/j.cpc.2018.11.012

APA Citation styleTripolt, R., Gubler, P., Ulybyshev, M., & von Smekal, L. (2019). Numerical analytic continuation of Euclidean data. Computer Physics Communications. 237, 129-142. https://doi.org/10.1016/j.cpc.2018.11.012



Keywords


ANALYTIC CONTINUATIONFIELD-THEORYINFORMATION-THEORYLATTICE QCDMAXIMUM-ENTROPY ANALYSISQCDSpectral functionSPECTRAL FUNCTIONS

Last updated on 2025-02-04 at 01:07