Journalartikel

Freudenthal triple systems in arbitrary characteristic


AutorenlisteMuehlherr, Bernhard; Weiss, Richard M.

Jahr der Veröffentlichung2019

Seiten237-275

ZeitschriftJournal of Algebra

Bandnummer520

ISSN0021-8693

eISSN1090-266X

Open Access StatusBronze

DOI Linkhttps://doi.org/10.1016/j.jalgebra.2018.11.015

VerlagElsevier


Abstract
Let q: V -> K be the form of degree 4 and H the alternating bilinear form that together give rise to a Freudenthal triple system when the characteristic of K is different from 2 and 3. We give a form Theta of degree 4 on a central cover of V over an arbitrary field in arbitrary characteristic and determine the group of similitudes of Theta. This group coincides with the intersection of the group of similitudes of q and the isometry group of H when the characteristic is different from 2 and 3 and has the expected structure of a suitable Levi subgroup in general. We extend known results about the stabilizers of elements of V and orbits of the group of similitudes and show, in particular, the existence of an exotic set of orbits when char(K) = 2 and K is not perfect. (C) 2018 Elsevier Inc. All rights reserved.



Zitierstile

Harvard-ZitierstilMuehlherr, B. and Weiss, R. (2019) Freudenthal triple systems in arbitrary characteristic, Journal of Algebra, 520, pp. 237-275. https://doi.org/10.1016/j.jalgebra.2018.11.015

APA-ZitierstilMuehlherr, B., & Weiss, R. (2019). Freudenthal triple systems in arbitrary characteristic. Journal of Algebra. 520, 237-275. https://doi.org/10.1016/j.jalgebra.2018.11.015



Schlagwörter


Cubic norm structureExceptional groupFreudenthal triple systemJORDAN ALGEBRASLIE-ALGEBRASMODULE


Nachhaltigkeitsbezüge


Zuletzt aktualisiert 2025-10-06 um 10:57