Journalartikel

Operational State Complexity and Decidability of Jumping Finite Automata


AutorenlisteBeier, Simon; Holzer, Markus; Kutrib, Martin

Jahr der Veröffentlichung2019

Seiten5-27

ZeitschriftInternational Journal of Foundations of Computer Science

Bandnummer30

Heftnummer1

ISSN0129-0541

eISSN1793-6373

DOI Linkhttps://doi.org/10.1142/S012905411940001X

VerlagWorld Scientific Publishing


Abstract
We consider jumping finite automata and their operational state complexity and decidability status. Roughly speaking, a jumping automaton is a finite automaton with a non-continuous input. This device has nice relations to semilinear sets and thus to Parikh images of regular sets, which will be exhaustively used in our proofs. In particular, we prove upper bounds on the intersection and complementation. The latter result on the complementation upper bound answers an open problem from [G. J. Lavado, G. Pighizzini, S. Seki: Operational State Complexity of Parikh Equivalence, 2014]. Moreover, we correct an erroneous result on the inverse homomorphism closure. Finally, we also consider the decidability status of standard problems as regularity, disjointness, universality, inclusion, etc. for jumping finite automata.



Zitierstile

Harvard-ZitierstilBeier, S., Holzer, M. and Kutrib, M. (2019) Operational State Complexity and Decidability of Jumping Finite Automata, International Journal of Foundations of Computer Science, 30(1), pp. 5-27. https://doi.org/10.1142/S012905411940001X

APA-ZitierstilBeier, S., Holzer, M., & Kutrib, M. (2019). Operational State Complexity and Decidability of Jumping Finite Automata. International Journal of Foundations of Computer Science. 30(1), 5-27. https://doi.org/10.1142/S012905411940001X



Schlagwörter


DecidabilityJumping automatonoperation problemParikh imagesemilinear setState complexity


Nachhaltigkeitsbezüge


Zuletzt aktualisiert 2025-02-04 um 01:11