Journalartikel
Autorenliste: Imasato, Kazuki; Kang, Stephen Dongmin; Ohno, Saneyuki; Snyder, G. Jeffrey
Jahr der Veröffentlichung: 2018
Seiten: 59-64
Zeitschrift: Materials Horizons
Bandnummer: 5
Heftnummer: 1
ISSN: 2051-6347
eISSN: 2051-6355
Open Access Status: Green
DOI Link: https://doi.org/10.1039/c7mh00865a
Verlag: Royal Society of Chemistry
Abstract:
Mg3Sb2-Mg3Bi2 alloys show excellent thermoelectric properties. The benefit of alloying has been attributed to the reduction in lattice thermal conductivity. However, Mg3Bi2-alloying may also be expected to significantly change the electronic structure. By comparatively modeling the transport properties of n- and p-type Mg3Sb2-Mg3Bi2 and also Mg3Bi2-alloyed and non-alloyed samples, we elucidate the origin of the highest zT composition where electronic properties account for about 50% of the improvement. We find that Mg3Bi2 alloying increases the weighted mobility while reducing the band gap. The reduced band gap is found not to compromise the thermoelectric performance for a small amount of Mg3Bi2 because the peak zT in unalloyed Mg3Sb2 is at a temperature higher than the stable range for the material. By quantifying the electronic influence of Mg3Bi2 alloying, we model the optimum Mg3Bi2 content for thermoelectrics to be in the range of 20-30%, consistent with the most commonly reported composition Mg3Sb1.5Bi0.5.
Zitierstile
Harvard-Zitierstil: Imasato, K., Kang, S., Ohno, S. and Snyder, G. (2018) Band engineering in Mg3Sb2 by alloying with Mg3Bi2 for enhanced thermoelectric performance, Materials Horizons, 5(1), pp. 59-64. https://doi.org/10.1039/c7mh00865a
APA-Zitierstil: Imasato, K., Kang, S., Ohno, S., & Snyder, G. (2018). Band engineering in Mg3Sb2 by alloying with Mg3Bi2 for enhanced thermoelectric performance. Materials Horizons. 5(1), 59-64. https://doi.org/10.1039/c7mh00865a
Schlagwörter
ZINTL COMPOUNDS