Journalartikel
Autorenliste: Biswas, Arunangshu; Goswami, Anindya; Overbeck, Ludger
Jahr der Veröffentlichung: 2018
Seiten: 116-126
Zeitschrift: Statistics and Probability Letters
Bandnummer: 138
ISSN: 0167-7152
eISSN: 1879-2103
Open Access Status: Green
DOI Link: https://doi.org/10.1016/j.spl.2018.02.056
Verlag: Elsevier
Abstract:
We consider a regime switching stochastic volatility model where the stock volatility dynamics is a semi-Markov modulated square root mean reverting process. Under this model assumption, we find the locally risk minimizing price of European type vanilla options. The price function is shown to satisfy a non-local degenerate parabolic PDE which can be viewed as a generalization of the Heston PDE. The related Cauchy problem involving the PDE is shown to be equivalent to an integral equation (IE). The existence and uniqueness of solution to the PDE is carried out by studying the IE and using the semigroup theory. (C) 2018 Elsevier B.V. All rights reserved.
Zitierstile
Harvard-Zitierstil: Biswas, A., Goswami, A. and Overbeck, L. (2018) Option pricing in a regime switching stochastic volatility model, Statistics and Probability Letters, 138, pp. 116-126. https://doi.org/10.1016/j.spl.2018.02.056
APA-Zitierstil: Biswas, A., Goswami, A., & Overbeck, L. (2018). Option pricing in a regime switching stochastic volatility model. Statistics and Probability Letters. 138, 116-126. https://doi.org/10.1016/j.spl.2018.02.056
Schlagwörter
Cauchy problem; Follmer-Schweizer decomposition; Heston model; Option pricing; Regime switching models