Journalartikel

Option pricing in a regime switching stochastic volatility model


AutorenlisteBiswas, Arunangshu; Goswami, Anindya; Overbeck, Ludger

Jahr der Veröffentlichung2018

Seiten116-126

ZeitschriftStatistics and Probability Letters

Bandnummer138

ISSN0167-7152

eISSN1879-2103

Open Access StatusGreen

DOI Linkhttps://doi.org/10.1016/j.spl.2018.02.056

VerlagElsevier


Abstract
We consider a regime switching stochastic volatility model where the stock volatility dynamics is a semi-Markov modulated square root mean reverting process. Under this model assumption, we find the locally risk minimizing price of European type vanilla options. The price function is shown to satisfy a non-local degenerate parabolic PDE which can be viewed as a generalization of the Heston PDE. The related Cauchy problem involving the PDE is shown to be equivalent to an integral equation (IE). The existence and uniqueness of solution to the PDE is carried out by studying the IE and using the semigroup theory. (C) 2018 Elsevier B.V. All rights reserved.



Zitierstile

Harvard-ZitierstilBiswas, A., Goswami, A. and Overbeck, L. (2018) Option pricing in a regime switching stochastic volatility model, Statistics and Probability Letters, 138, pp. 116-126. https://doi.org/10.1016/j.spl.2018.02.056

APA-ZitierstilBiswas, A., Goswami, A., & Overbeck, L. (2018). Option pricing in a regime switching stochastic volatility model. Statistics and Probability Letters. 138, 116-126. https://doi.org/10.1016/j.spl.2018.02.056



Schlagwörter


Cauchy problemFollmer-Schweizer decompositionHeston modelOption pricingRegime switching models

Zuletzt aktualisiert 2025-10-06 um 10:53