Journal article

Nonexponential kinetics of ion pair dissociation in electrofreezing water


Authors listAlaghemandi, Mohammad; Koller, Volkmar; Green, Jason R.

Publication year2017

Pages26396-26402

JournalPhysical Chemistry Chemical Physics

Volume number19

Issue number38

ISSN1463-9076

eISSN1463-9084

DOI Linkhttps://doi.org/10.1039/c7cp04572g

PublisherRoyal Society of Chemistry


Abstract
Temporally-or spatially-heterogeneous environments can participate in many kinetic processes, from chemical reactions and self-assembly to the forced dissociation of biomolecules. Here, we simulate the molecular dynamics of a model ion pair forced to dissociate in an explicit, aqueous solution. Triggering dissociation with an external electric field causes the surrounding water to electrofreeze and the ion pair population to decay nonexponentially. To further probe the role of the aqueous environment in the kinetics, we also simulate dissociation events under a purely mechanical force on the ion pair. In this case, regardless of whether the surrounding water is a liquid or already electrofrozen, the ion pair population decays exponentially with a well-defined rate constant that is specific to the medium and applied force. These simulation data, and the rate parameters we extract, suggest the disordered kinetics in an electrofreezing medium are a result of the comparable time scales of two concurrent processes, electrofreezing and dissociation.



Citation Styles

Harvard Citation styleAlaghemandi, M., Koller, V. and Green, J. (2017) Nonexponential kinetics of ion pair dissociation in electrofreezing water, Physical Chemistry Chemical Physics, 19(38), pp. 26396-26402. https://doi.org/10.1039/c7cp04572g

APA Citation styleAlaghemandi, M., Koller, V., & Green, J. (2017). Nonexponential kinetics of ion pair dissociation in electrofreezing water. Physical Chemistry Chemical Physics. 19(38), 26396-26402. https://doi.org/10.1039/c7cp04572g



Keywords


BRIDGEFIELDSLIQUID WATERMOLECULAR-DYNAMICSSTATIC DISORDER

Last updated on 2025-02-04 at 01:29