Journal article
Authors list: van Bemmelen, Rob; Moe, Borge; Hanssen, Sveinn Are; Schmidt, Niels Martin; Hansen, Jannik; Lang, Johannes; Sittler, Benoit; Bollache, Loic; Tulp, Ingrid; Klaassen, Raymond; Gilg, Olivier
Publication year: 2017
Pages: 197-211
Journal: Marine Ecology Progress Series
Volume number: 578
ISSN: 0171-8630
eISSN: 1616-1599
Open access status: Green
DOI Link: https://doi.org/10.3354/meps12010
Publisher: Inter-Research Science Publisher
Abstract:
Quantifying within- and between-individual variation in animal migration strategies is a first step towards our understanding of the ability of migrants to adjust to changes in the environment. We studied consistency (or, conversely, flexibility) in movement patterns at large (>1000 km) to meso-scales (100-1000 km) during the non-breeding season of the long-tailed skua Stercorarius longicaudus, a long-distance migratory Arctic seabird, using light-based geolocation. We obtained 97 annual tracks of 38 individuals and quantified similarity between routes. Overall, tracks of the same individual were generally within about 200 to 300 km of their previous year's route, and more similar than tracks of different individuals. Some flexibility was observed during migration, but individuals were faithful to their staging areas in the North Atlantic and in the Benguela Current off Namibia and South Africa. Over the course of the winter, an increasing number of individuals started to deviate-up to 5200 km-from the previous year's route. Intriguingly, individuals could be highly consistent between 2 consecutive years and flexible between other years. Site-shifts in late winter seem to reflect responses to local conditions, but what promotes this larger flexibility remains unclear and requires further study. Our results show that individual long-tailed skuas are generally consistent in their itineraries, but can show considerable flexibility in some years. The flexibility in itineraries suggests that long-tailed skuas are able to adjust to environmental change, but the mechanisms leading to the observed within-and between-individual variation in movement patterns are still poorly understood.
Citation Styles
Harvard Citation style: van Bemmelen, R., Moe, B., Hanssen, S., Schmidt, N., Hansen, J., Lang, J., et al. (2017) Flexibility in otherwise consistent non-breeding movements of a long-distance migratory seabird, the long-tailed skua, Marine Ecology Progress Series, 578, pp. 197-211. https://doi.org/10.3354/meps12010
APA Citation style: van Bemmelen, R., Moe, B., Hanssen, S., Schmidt, N., Hansen, J., Lang, J., Sittler, B., Bollache, L., Tulp, I., Klaassen, R., & Gilg, O. (2017). Flexibility in otherwise consistent non-breeding movements of a long-distance migratory seabird, the long-tailed skua. Marine Ecology Progress Series. 578, 197-211. https://doi.org/10.3354/meps12010
Keywords
ALBATROSSES; ATLANTIC; FLEXIBILITY; Individual consistency; NAVIGATION; Non-breeding movements; OCEAN; REPEATABILITY; Stercorarius longicaudus; TERNS STERNA-PARADISAEA; TRANS-EQUATORIAL MIGRATION