Journal article

On the maximality of a set of mutually orthogonal Sudoku Latin Squares


Authors listD'haeseleer, Jozefien; Metsch, Klaus; Storme, Leo; Van de Voorde, Geertrui

Publication year2017

Pages143-152

JournalDesigns, Codes and Cryptography

Volume number84

Issue number1-2

ISSN0925-1022

eISSN1573-7586

DOI Linkhttps://doi.org/10.1007/s10623-016-0234-3

PublisherSpringer


Abstract
The maximum number of mutually orthogonal Sudoku Latin squares (MOSLS) of order is n = m(2) is n - m. In this paper, we construct for n = q(2), q a prime power, a set of q(2) - q - 1 MOSLS of order q(2) that cannot be extended to a set of q(2) - q MOSLS. This contrasts to the theory of ordinary Latin squares of order n, where each set of n - 2 mutually orthogonal Latin Squares (MOLS) can be extended to a set of n - 1 MOLS (which is best possible). For this proof, we construct a particular maximal partial spread of size q(2) - q + 1 in PG(3,q) and use a connection between Sudoku Latin squares and projective geometry, established by Bailey, Cameron and Connelly.



Citation Styles

Harvard Citation styleD'haeseleer, J., Metsch, K., Storme, L. and Van de Voorde, G. (2017) On the maximality of a set of mutually orthogonal Sudoku Latin Squares, Designs, Codes and Cryptography, 84(1-2), pp. 143-152. https://doi.org/10.1007/s10623-016-0234-3

APA Citation styleD'haeseleer, J., Metsch, K., Storme, L., & Van de Voorde, G. (2017). On the maximality of a set of mutually orthogonal Sudoku Latin Squares. Designs, Codes and Cryptography. 84(1-2), 143-152. https://doi.org/10.1007/s10623-016-0234-3



Keywords


Latin squareMaximal partial spreadMOLSMOSLSRegular spreadSudoku

Last updated on 2025-02-04 at 01:35