Journal article
Authors list: Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; Konig, Kristian; Litvinov, Yuri A.; Lochmann, Matthias; Maass, Bernhard; Meisner, Johann; Murbock, Tobias; Sanchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stohlker, Thomas; Thompson, Richard C.; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nortershauser, Wilfried
Publication year: 2017
Journal: Nature Communications
Volume number: 8
ISSN: 2041-1723
Open access status: Gold
DOI Link: https://doi.org/10.1038/ncomms15484
Publisher: Nature Research
Abstract:
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth Bi-209(82+) experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth Bi-209(82+, 80+) with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-sigma discrepancy compared with the theoretical prediction.
Citation Styles
Harvard Citation style: Ullmann, J., Andelkovic, Z., Brandau, C., Dax, A., Geithner, W., Geppert, C., et al. (2017) High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED, Nature Communications, 8, Article 15484. https://doi.org/10.1038/ncomms15484
APA Citation style: Ullmann, J., Andelkovic, Z., Brandau, C., Dax, A., Geithner, W., Geppert, C., Gorges, C., Hammen, M., Hannen, V., Kaufmann, S., Konig, K., Litvinov, Y., Lochmann, M., Maass, B., Meisner, J., Murbock, T., Sanchez, R., Schmidt, M., Schmidt, S., ...Nortershauser, W. (2017). High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED. Nature Communications. 8, Article 15484. https://doi.org/10.1038/ncomms15484
Keywords
LASER SPECTROSCOPY; NUCLEAR MAGNETIZATION DISTRIBUTION; RADII