Journalartikel

Identification of KRT16 as a target of an autoantibody response in complex regional pain syndrome


AutorenlisteTajerian, Maral; Hung, Victor; Khan, Hamda; Lahey, Lauren J.; Sun, Yuan; Birklein, Frank; Kraemer, Heidrun H.; Robinson, William H.; Kingery, Wade S.; Clark, J. David

Jahr der Veröffentlichung2017

Seiten14-20

ZeitschriftExperimental Neurology

Bandnummer287

ISSN0014-4886

eISSN1090-2430

Open Access StatusGreen

DOI Linkhttps://doi.org/10.1016/j.expneurol.2016.10.011

VerlagElsevier


Abstract

Objective: Using a mouse model of complex regional pain syndrome (CRPS), our goal was to identify autoantigens in the skin of the affected limb.

Methods: A CRPS-like state was induced using the tibia fracture/cast immobilization model. Three weeks after fracture, hindpaw skin was homogenized, run on 2-d gels, and probed by sera from fracture and control mice. Spots of interest were analyzed by liquid chromatography-mass spectroscopy (LC-MS) and the list of targets validated by examining their abundance and subcellular localization. In order to measure the autoantigenicity of selected protein targets, we quantified the binding of IgM in control and fracture mice sera, as well as in control and CRPS human sera, to the recombinant protein.

Results: We show unique binding between fracture skin extracts and fracture sera, suggesting the presence of auto-antigens. LC-MS analysis provided us a list of potential targets, some of which were upregulated after fracture (KRT16, eEF1a1, and PRPH), while others showed subcellular-redistribution and increased membrane localization (ANXA2 and ENO3). No changes in protein citrullination or carbamylation were observed. In addition to increased abundance, KRT16 demonstrated autoantigenicity, since sera from both fracture mice and CRPS patients showed increased autoantibody binding to recombinant kRT16 protein.

Conclusions: Pursuing autoimmune contributions to CRPS provides a novel approach to understanding the condition and may allow the development of mechanism-based therapies. The identification of autoantibodies against KRT16 as a biomarker in mice and in humans is a critical step towards these goals, and towards redefining CRPS as having an autoimmune etiology. (C) 2016 Elsevier Inc. All rights reserved.




Zitierstile

Harvard-ZitierstilTajerian, M., Hung, V., Khan, H., Lahey, L., Sun, Y., Birklein, F., et al. (2017) Identification of KRT16 as a target of an autoantibody response in complex regional pain syndrome, Experimental Neurology, 287, pp. 14-20. https://doi.org/10.1016/j.expneurol.2016.10.011

APA-ZitierstilTajerian, M., Hung, V., Khan, H., Lahey, L., Sun, Y., Birklein, F., Kraemer, H., Robinson, W., Kingery, W., & Clark, J. (2017). Identification of KRT16 as a target of an autoantibody response in complex regional pain syndrome. Experimental Neurology. 287, 14-20. https://doi.org/10.1016/j.expneurol.2016.10.011



Schlagwörter


Animal models of painAntigen identificationAUTOIMMUNITYCHRONIC PAINComplex regional pain syndromeKeratin 16


Nachhaltigkeitsbezüge


Zuletzt aktualisiert 2025-10-06 um 10:41