Journal article

Impact of adjacent land use on coastal wetland sediments


Authors listKarstens, Svenja; Buczko, Uwe; Jurasinski, Gerald; Peticzka, Robert; Glatzel, Stephan

Publication year2016

Pages337-348

JournalScience of the Total Environment

Volume number550

ISSN0048-9697

eISSN1879-1026

DOI Linkhttps://doi.org/10.1016/j.scitotenv.2016.01.079

PublisherElsevier


Abstract
Coastal wetlands link terrestrial with marine ecosystems and are influenced from both land and sea. Therefore, they are ecotones with strong biogeochemical gradients. We analyzed sediment characteristics including macro nutrients (C, N, P, K, Mg, Ca, S) and heavy metals (Mn, Fe, Cu, Zn, Al, Co, Cr, Ni) of two coastal wetlands dominated by Phragmites atistralis at the Darss-Zingst Bodden Chain, a lagoon system at the Southern Baltic Sea, to identify the impact of adjacent land use and to distinguish between influences from land or sea. In the wetland directly adjacent to cropland (study site Dabitz) heavy metal concentrations were significantly elevated. Fertilizer application led to heavy metal accumulation in the sediments of the adjacent wetland zones. In contrast, at the other study site (Michaelsdorf), where the hinterland has been used as pasture, heavy metal concentrations were low. While the amount of macronutrients was also influenced by vegetation characteristics (e.g. carbon) or water chemistry (e.g. sulfate), the accumulation of heavy metals is regarded as purely anthropogenic influence. A principal component analysis (PCA) based on the sediment data showed that the wetland fringes of the two study sites are not distinguishable, neither in their macronutrient status nor in their concentrations of heavy metals, whereas the interior zones exhibit large differences in terms of heavy metal concentrations. This suggests that seaside influences are minor compared to influences from land. Altogether, heavy metal concentrations were still below national precautionary and action values. However, if we regard the macronutrient and heavy metal concentrations in the wetland fringes as the natural background values, an accumulation of trace elements from agricultural production in the hinterland is appare nt. Thus, coastal wetlands bordering croplands may function as effective pollutant buffers today, but the future development has to be monitored closely to avoid breakthroughs due to exceeded carrying capacities. (C) 2016 Elsevier B.V. All rights reserved.



Citation Styles

Harvard Citation styleKarstens, S., Buczko, U., Jurasinski, G., Peticzka, R. and Glatzel, S. (2016) Impact of adjacent land use on coastal wetland sediments, Science of the Total Environment, 550, pp. 337-348. https://doi.org/10.1016/j.scitotenv.2016.01.079

APA Citation styleKarstens, S., Buczko, U., Jurasinski, G., Peticzka, R., & Glatzel, S. (2016). Impact of adjacent land use on coastal wetland sediments. Science of the Total Environment. 550, 337-348. https://doi.org/10.1016/j.scitotenv.2016.01.079



Keywords


coastal wetlandPHOSPHATE FERTILIZERSPhragmites australisPHRAGMITES-AUSTRALIS

Last updated on 2025-02-04 at 01:51