Journalartikel

On the Banach algebra (ω(Λ), ω(Λ)) and applications to the solvability of matrix equations in ω(Λ)


AutorenlisteDe Malafosse, Bruno; Malkowsky, Eberhard

Jahr der Veröffentlichung2014

Seiten197-217

ZeitschriftPublicationes Mathematicae Debrecen

Bandnummer85

Heftnummer1-2

ISSN0033-3883

Open Access StatusBronze

DOI Linkhttps://doi.org/10.5486/PMD.2014.5915

VerlagDebreceni Egyetem, Matematika Intézet


Abstract
We apply the characterisation of the class (omega(infinity)(Lambda), omega(infinity)(Sigma)) and the fact that this is a Banach algebra to study the solvability in omega(infinity)(Lambda) of matrix equations of the form Delta X-+(rho) = B and Delta X-rho = B, where Delta(+)(rho) and Delta(p) are upper and lower triangular matrices. Finally, we obtain some results on infinite tridiagonal matrices considered as operators from omega(infinity)(Lambda) into itself, and study the solvability in omega(infinity)(Lambda) of matrix equations for tridiagonal matrices.



Zitierstile

Harvard-ZitierstilDe Malafosse, B. and Malkowsky, E. (2014) On the Banach algebra (ω(Λ), ω(Λ)) and applications to the solvability of matrix equations in ω(Λ), Publicationes Mathematicae Debrecen, 85(1-2), pp. 197-217. https://doi.org/10.5486/PMD.2014.5915

APA-ZitierstilDe Malafosse, B., & Malkowsky, E. (2014). On the Banach algebra (ω(Λ), ω(Λ)) and applications to the solvability of matrix equations in ω(Λ). Publicationes Mathematicae Debrecen. 85(1-2), 197-217. https://doi.org/10.5486/PMD.2014.5915



Schlagwörter


BK spacesinfinite linear systemsmatrix transformationsspaces of strongly bounded sequencessummability

Zuletzt aktualisiert 2025-10-06 um 10:22