Journalartikel

FROM EQUIVALENCE TO ALMOST-EQUIVALENCE, AND BEYOND: MINIMIZING AUTOMATA WITH ERRORS


AutorenlisteHolzer, Markus; Jakobi, Sebastian

Jahr der Veröffentlichung2013

Seiten1083-1097

ZeitschriftInternational Journal of Foundations of Computer Science

Bandnummer24

Heftnummer7

ISSN0129-0541

eISSN1793-6373

DOI Linkhttps://doi.org/10.1142/S0129054113400327

VerlagWorld Scientific Publishing


Abstract
We introduce E-equivalence, which is a straightforward generalization of almost-equivalence. While almost-equivalence asks for ordinary equivalence up to a finite number of exceptions, in E-equivalence these exceptions or errors must belong to a (regular) set E. The computational complexity of deterministic finite automata (DFAs) minimization problems and their variants w.r.t. almost- and E-equivalence are studied. We show that there is a significant difference in the complexity of problems related to almost-equivalence, and those related to E-equivalence. Moreover, since hyper-minimal and E-minimal automata are not necessarily unique (up to isomorphism as for minimal DFAs), we consider the problem of counting the number of these minimal automata.



Zitierstile

Harvard-ZitierstilHolzer, M. and Jakobi, S. (2013) FROM EQUIVALENCE TO ALMOST-EQUIVALENCE, AND BEYOND: MINIMIZING AUTOMATA WITH ERRORS, International Journal of Foundations of Computer Science, 24(7), pp. 1083-1097. https://doi.org/10.1142/S0129054113400327

APA-ZitierstilHolzer, M., & Jakobi, S. (2013). FROM EQUIVALENCE TO ALMOST-EQUIVALENCE, AND BEYOND: MINIMIZING AUTOMATA WITH ERRORS. International Journal of Foundations of Computer Science. 24(7), 1083-1097. https://doi.org/10.1142/S0129054113400327



Schlagwörter


almost-equivalencecomputational complexityENUMERATIONHYPER-MINIMIZATIONLOG-SPACEminimal finite automata


Nachhaltigkeitsbezüge


Zuletzt aktualisiert 2025-02-04 um 02:17