Journal article

Evolutionary Conserved Role of c-Jun-N-Terminal Kinase in CO2-Induced Epithelial Dysfunction


Authors listVadasz, Istvan; Dada, Laura A.; Briva, Arturo; Helenius, Iiro Taneli; Sharabi, Kfir; Welch, Lynn C.; Kelly, Aileen M.; Grzesik, Benno A.; Budinger, G. R. Scott; Liu, Jing; Seeger, Werner; Beitel, Greg J.; Gruenbaum, Yosef; Sznajder, Jacob I.

Publication year2012

JournalPLoS ONE

Volume number7

Issue number10

ISSN1932-6203

Open access statusGold

DOI Linkhttps://doi.org/10.1371/journal.pone.0046696

PublisherPublic Library of Science


Abstract
Elevated CO2 levels (hypercapnia) occur in patients with respiratory diseases and impair alveolar epithelial integrity, in part, by inhibiting Na,K-ATPase function. Here, we examined the role of c-Jun N-terminal kinase (JNK) in CO2 signaling in mammalian alveolar epithelial cells as well as in diptera, nematodes and rodent lungs. In alveolar epithelial cells, elevated CO2 levels rapidly induced activation of JNK leading to downregulation of Na, K-ATPase and alveolar epithelial dysfunction. Hypercapnia-induced activation of JNK required AMP-activated protein kinase (AMPK) and protein kinase C-zeta leading to subsequent phosphorylation of JNK at Ser-129. Importantly, elevated CO2 levels also caused a rapid and prominent activation of JNK in Drosophila S2 cells and in C. elegans. Paralleling the results with mammalian epithelial cells, RNAi against Drosophila JNK fully prevented CO2-induced downregulation of Na, K-ATPase in Drosophila S2 cells. The importance and specificity of JNK CO2 signaling was additionally demonstrated by the ability of mutations in the C. elegans JNK homologs, jnk-1 and kgb-2 to partially rescue the hypercapnia-induced fertility defects but not the pharyngeal pumping defects. Together, these data provide evidence that deleterious effects of hypercapnia are mediated by JNK which plays an evolutionary conserved, specific role in CO2 signaling in mammals, diptera and nematodes.



Citation Styles

Harvard Citation styleVadasz, I., Dada, L., Briva, A., Helenius, I., Sharabi, K., Welch, L., et al. (2012) Evolutionary Conserved Role of c-Jun-N-Terminal Kinase in CO2-Induced Epithelial Dysfunction, PLoS ONE, 7(10), Article e46696. https://doi.org/10.1371/journal.pone.0046696

APA Citation styleVadasz, I., Dada, L., Briva, A., Helenius, I., Sharabi, K., Welch, L., Kelly, A., Grzesik, B., Budinger, G., Liu, J., Seeger, W., Beitel, G., Gruenbaum, Y., & Sznajder, J. (2012). Evolutionary Conserved Role of c-Jun-N-Terminal Kinase in CO2-Induced Epithelial Dysfunction. PLoS ONE. 7(10), Article e46696. https://doi.org/10.1371/journal.pone.0046696



Keywords


ALPHA-SUBUNITALVEOLAR FLUID REABSORPTIONCARBON-DIOXIDE AVOIDANCEELEVATED CO2 LEVELSINDUCED ENDOCYTOSISJNK ACTIVATIONKAPPA-B

Last updated on 2025-10-06 at 10:08