Journal article

PAR-2 Inhibition Reverses Experimental Pulmonary Hypertension


Authors listKwapiszewska, Grazyna; Markart, Philipp; Dahal, Bhola Kumar; Kojonazarov, Baktybek; Marsh, Leigh Matthew; Schermuly, Ralph Theo; Taube, Christian; Meinhardt, Andreas; Ghofrani, Hossein Ardeschir; Steinhoff, Martin; Seeger, Werner; Preissner, Klaus Theo; Olschewski, Andrea; Weissmann, Norbert; Wygrecka, Malgorzata

Publication year2012

Pages1179-117+

JournalCirculation Research

Volume number110

Issue number9

ISSN0009-7330

eISSN1524-4571

Open access statusBronze

DOI Linkhttps://doi.org/10.1161/CIRCRESAHA.111.257568

PublisherAmerican Heart Association


Abstract

Rationale: A hallmark of the vascular remodeling process underlying pulmonary hypertension (PH) is the aberrant proliferation and migration of pulmonary arterial smooth muscle cells (PASMC). Accumulating evidence suggests that mast cell mediators play a role in the pathogenesis of PH.

Objective: In the present study we investigated the importance of protease-activated receptor (PAR)-2 and its ligand mast cell tryptase in the development of PH.

Methods and Results: Our results revealed strong increase in PAR-2 and tryptase expression in the lungs of idiopathic pulmonary arterial hypertension (IPAH) patients, hypoxia-exposed mice, and monocrotaline (MCT)-treated rats. Elevated tryptase levels were also detected in plasma samples from IPAH patients. Hypoxia and platelet-derived growth factor (PDGF)-BB upregulated PAR-2 expression in PASMC. This effect was reversed by HIF (hypoxia inducible factor)-1 alpha depletion, PDGF-BB neutralizing antibody, or the PDGF-BB receptor antagonist Imatinib. Attenuation of PAR-2 expression was also observed in smooth muscle cells of pulmonary vessels of mice exposed to hypoxia and rats challenged with MCT in response to Imatinib treatment. Tryptase induced PASMC proliferation and migration as well as enhanced synthesis of fibronectin and matrix metalloproteinase-2 in a PAR-2- and ERK1/2-dependent manner, suggesting that PAR-2- dependent signaling contributes to vascular remodeling by various mechanisms. Furthermore, PAR-2(-/-) mice were protected against hypoxia-induced PH, and PAR-2 antagonist application reversed established PH in the hypoxia mouse model.

Conclusions: Our study identified a novel role of PAR-2 in vascular remodeling in the lung. Interference with this pathway may offer novel therapeutic options for the treatment of PH. (Circ Res. 2012;110:1179-1191.)




Citation Styles

Harvard Citation styleKwapiszewska, G., Markart, P., Dahal, B., Kojonazarov, B., Marsh, L., Schermuly, R., et al. (2012) PAR-2 Inhibition Reverses Experimental Pulmonary Hypertension, Circulation Research, 110(9), pp. 1179-117+. https://doi.org/10.1161/CIRCRESAHA.111.257568

APA Citation styleKwapiszewska, G., Markart, P., Dahal, B., Kojonazarov, B., Marsh, L., Schermuly, R., Taube, C., Meinhardt, A., Ghofrani, H., Steinhoff, M., Seeger, W., Preissner, K., Olschewski, A., Weissmann, N., & Wygrecka, M. (2012). PAR-2 Inhibition Reverses Experimental Pulmonary Hypertension. Circulation Research. 110(9), 1179-117+. https://doi.org/10.1161/CIRCRESAHA.111.257568



Keywords


ARTERIAL-HYPERTENSIONCHRONIC HYPOXIAFACTOR XAMast cellsMAST-CELL TRYPTASEMITOGENprotease-activated receptor-2PROTEASE-ACTIVATED RECEPTOR-2pulmonary arterial hypertensionSMOOTH-MUSCLE CELL

Last updated on 2025-10-06 at 10:06