Journalartikel
Autorenliste: Basar, Feyzi; Malkowsky, Eberhard
Jahr der Veröffentlichung: 2011
Seiten: 5199-5207
Zeitschrift: Applied Mathematics and Computation
Bandnummer: 217
Heftnummer: 12
ISSN: 0096-3003
DOI Link: https://doi.org/10.1016/j.amc.2010.12.007
Verlag: Elsevier
Abstract:
We use the characterizations of the classes of all infinite matrices that map the spaces of sequences which are strongly summable or bounded by the Cesaro method of order 1 into the spaces of null or convergent sequences given by Basar, Malkowsky and Altay [Matrix transformations on the matrix domains of triangles in the spaces of strongly C1-summable and bounded sequences, Publ. Math. Debrecen 73 (1-2) (2008), 193-213] and the Hausdorff measure of noncompactness to characterize the classes of all compact operators between those spaces. Published by Elsevier Inc.
Zitierstile
Harvard-Zitierstil: Basar, F. and Malkowsky, E. (2011) The characterization of compact operators on spaces of strongly summable and bounded sequences, Applied Mathematics and Computation, 217(12), pp. 5199-5207. https://doi.org/10.1016/j.amc.2010.12.007
APA-Zitierstil: Basar, F., & Malkowsky, E. (2011). The characterization of compact operators on spaces of strongly summable and bounded sequences. Applied Mathematics and Computation. 217(12), 5199-5207. https://doi.org/10.1016/j.amc.2010.12.007
Schlagwörter
Compact operators; Hausdorff measure of noncompactness; MATRIX DOMAINS; Matrix transformations; Spaces of strongly bounded and summable sequences; TRIANGLES
Nachhaltigkeitsbezüge