Journalartikel

The characterization of compact operators on spaces of strongly summable and bounded sequences


AutorenlisteBasar, Feyzi; Malkowsky, Eberhard

Jahr der Veröffentlichung2011

Seiten5199-5207

ZeitschriftApplied Mathematics and Computation

Bandnummer217

Heftnummer12

ISSN0096-3003

DOI Linkhttps://doi.org/10.1016/j.amc.2010.12.007

VerlagElsevier


Abstract
We use the characterizations of the classes of all infinite matrices that map the spaces of sequences which are strongly summable or bounded by the Cesaro method of order 1 into the spaces of null or convergent sequences given by Basar, Malkowsky and Altay [Matrix transformations on the matrix domains of triangles in the spaces of strongly C1-summable and bounded sequences, Publ. Math. Debrecen 73 (1-2) (2008), 193-213] and the Hausdorff measure of noncompactness to characterize the classes of all compact operators between those spaces. Published by Elsevier Inc.



Zitierstile

Harvard-ZitierstilBasar, F. and Malkowsky, E. (2011) The characterization of compact operators on spaces of strongly summable and bounded sequences, Applied Mathematics and Computation, 217(12), pp. 5199-5207. https://doi.org/10.1016/j.amc.2010.12.007

APA-ZitierstilBasar, F., & Malkowsky, E. (2011). The characterization of compact operators on spaces of strongly summable and bounded sequences. Applied Mathematics and Computation. 217(12), 5199-5207. https://doi.org/10.1016/j.amc.2010.12.007



Schlagwörter


Compact operatorsHausdorff measure of noncompactnessMATRIX DOMAINSMatrix transformationsSpaces of strongly bounded and summable sequencesTRIANGLES

Zuletzt aktualisiert 2025-02-04 um 02:55