Konferenzpaper
Autorenliste: Conti, Costanza; Cotronei, Mariantonia; Sauer, Tomas
Jahr der Veröffentlichung: 2010
Seiten: 1649-1659
Zeitschrift: Journal of Computational and Applied Mathematics
Bandnummer: 233
Heftnummer: 7
ISSN: 0377-0427
Open Access Status: Bronze
DOI Link: https://doi.org/10.1016/j.cam.2009.02.016
Konferenz: International Conference on Multivariate Approximation and Interpolation with Applications
Verlag: Elsevier
Abstract:
In this extension of earlier work, we point out several ways how a multiresolution analysis can be derived from a finitely supported interpolatory matrix mask which has a positive definite symbol on the unit circle except at -1. A major tool in this investigation will be subdivision schemes that are obtained by using convolution or correlation operations based on replacing the usual matrix multiplications by Kronecker products. (C) 2009 Elsevier B.V. All rights reserved.
Zitierstile
Harvard-Zitierstil: Conti, C., Cotronei, M. and Sauer, T. (2010) Full rank interpolatory subdivision schemes: Kronecker, filters and multiresolution, Journal of Computational and Applied Mathematics, 233(7), pp. 1649-1659. https://doi.org/10.1016/j.cam.2009.02.016
APA-Zitierstil: Conti, C., Cotronei, M., & Sauer, T. (2010). Full rank interpolatory subdivision schemes: Kronecker, filters and multiresolution. Journal of Computational and Applied Mathematics. 233(7), 1649-1659. https://doi.org/10.1016/j.cam.2009.02.016
Schlagwörter
Full rank; Interpolatory scheme; Kronecker product; Multiresolution analysis; Vector subdivision; WAVELETS