Konferenzpaper

Full rank interpolatory subdivision schemes: Kronecker, filters and multiresolution


AutorenlisteConti, Costanza; Cotronei, Mariantonia; Sauer, Tomas

Jahr der Veröffentlichung2010

Seiten1649-1659

ZeitschriftJournal of Computational and Applied Mathematics

Bandnummer233

Heftnummer7

ISSN0377-0427

Open Access StatusBronze

DOI Linkhttps://doi.org/10.1016/j.cam.2009.02.016

KonferenzInternational Conference on Multivariate Approximation and Interpolation with Applications

VerlagElsevier


Abstract
In this extension of earlier work, we point out several ways how a multiresolution analysis can be derived from a finitely supported interpolatory matrix mask which has a positive definite symbol on the unit circle except at -1. A major tool in this investigation will be subdivision schemes that are obtained by using convolution or correlation operations based on replacing the usual matrix multiplications by Kronecker products. (C) 2009 Elsevier B.V. All rights reserved.



Zitierstile

Harvard-ZitierstilConti, C., Cotronei, M. and Sauer, T. (2010) Full rank interpolatory subdivision schemes: Kronecker, filters and multiresolution, Journal of Computational and Applied Mathematics, 233(7), pp. 1649-1659. https://doi.org/10.1016/j.cam.2009.02.016

APA-ZitierstilConti, C., Cotronei, M., & Sauer, T. (2010). Full rank interpolatory subdivision schemes: Kronecker, filters and multiresolution. Journal of Computational and Applied Mathematics. 233(7), 1649-1659. https://doi.org/10.1016/j.cam.2009.02.016



Schlagwörter


Full rankInterpolatory schemeKronecker productMultiresolution analysisVector subdivisionWAVELETS

Zuletzt aktualisiert 2025-10-06 um 09:53