Journal article

A note on Fredholm operators on (c0)T


Authors listDjolovic, Ivana; Malkowsky, Eberhard

Publication year2009

Pages1734-1739

JournalApplied Mathematics Letters

Volume number22

Issue number11

ISSN0893-9659

DOI Linkhttps://doi.org/10.1016/j.aml.2009.06.012

PublisherElsevier


Abstract
We characterize the class ((c(0))(T), (c(0))((T) over bar)) where T = (t(nk))(n,k=0)(infinity) and (T) over tilde = (t(nk))(n,k=0)(infinity) are triangles. Using the Hausdorff measure of noncompactness, we define the class of compact operators given by matrices in ((c(0))(T), (c(0))((T) over bar)). Furthermore we give a sufficient condition for a matrix operator to be a Fredholm operator on (c(0))(T). (C) 2009 Elsevier Ltd. All rights reserved.



Citation Styles

Harvard Citation styleDjolovic, I. and Malkowsky, E. (2009) A note on Fredholm operators on (c0)T, Applied Mathematics Letters, 22(11), pp. 1734-1739. https://doi.org/10.1016/j.aml.2009.06.012

APA Citation styleDjolovic, I., & Malkowsky, E. (2009). A note on Fredholm operators on (c0)T. Applied Mathematics Letters. 22(11), 1734-1739. https://doi.org/10.1016/j.aml.2009.06.012



Keywords


Compact operatorsCOMPACT-OPERATORSFredholm operatorsHausdorff measure of noncompactnessMatrix domains of trianglesMATRIX TRANSFORMATIONSSPACES

Last updated on 2025-02-04 at 03:10