Journalartikel

Differential transcriptome analysis of intraarticular les ona vs intact cartilage reveals new candidate genes in osteoarthritis pathophysiology


AutorenlisteGeyer, M.; Graessel, S.; Straub, R. H.; Schett, G.; Dinser, R.; Grifka, J.; Gay, S.; Neumann, E.; Mueller-Ladner, U.

Jahr der Veröffentlichung2009

Seiten328-335

ZeitschriftOsteoarthritis and Cartilage

Bandnummer17

Heftnummer3

ISSN1063-4584

eISSN1522-9653

Open Access StatusGreen

DOI Linkhttps://doi.org/10.1016/j.joca.2008.07.010

VerlagElsevier


Abstract

Objective: To elucidate disease-specific molecular changes in osteoarthritis (OA) by analyzing the differential gene expression profile of damaged vs intact cartilage areas within the same joint of patients with CA of the knee using a combination of a novel RNA extraction technique and whole-genome oligonucleotide arrays.

Methods: The transcriptome of macroscopically affected vs intact articular cartilage as determined by visual assessment was analyzed using an optimized mill-based total RNA isolation directly from the tissue and high density synthetic oligonucleotide arrays. Articular cartilage samples were obtained from patients with OA of the knee. Expression of differentially regulated genes was validated by real-time quantitative polymerase chain reaction and immunohistochemistry.

Results: The amount of RNA obtained by the optimized extraction procedure was at least 1 mu g per 500 mg of cartilage and fulfilled the common quality requirements. After hybridization onto HG-U133 Plus 2.0 GeneChips (Affymetrix), 28.6-51.7% of the probe sets on the microarray showed a detectable signal above the signal threshold in the individual samples. A subset of 411 transcripts, which appeared to be differentially expressed, was obtained when applying predefined filtering criteria. Of these, six genes were found to be up-regulated in the affected cartilage of all patients, including insulin-like growth factor binding protein 3 (IGFBP-3), wnt-1-inducible signaling protein 1 (WISP-1), aquaporin 1 (AOP-1), delta/notch-like EGF-repeat containing transmembrane (DNER), decay accelerating factor (DAF), complement factor I (IF).

Conclusion: The optimized methodical approach reported here not only allows to determine area-specific gene expression profiles of intraindividually different low-RNA containing OA cartilage specimens. In addition, this study also revealed novel genes not yet reported to play a role in the pathophysiology of joint destruction in OA. (c) 2008 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.




Zitierstile

Harvard-ZitierstilGeyer, M., Graessel, S., Straub, R., Schett, G., Dinser, R., Grifka, J., et al. (2009) Differential transcriptome analysis of intraarticular les ona vs intact cartilage reveals new candidate genes in osteoarthritis pathophysiology, Osteoarthritis and Cartilage, 17(3), pp. 328-335. https://doi.org/10.1016/j.joca.2008.07.010

APA-ZitierstilGeyer, M., Graessel, S., Straub, R., Schett, G., Dinser, R., Grifka, J., Gay, S., Neumann, E., & Mueller-Ladner, U. (2009). Differential transcriptome analysis of intraarticular les ona vs intact cartilage reveals new candidate genes in osteoarthritis pathophysiology. Osteoarthritis and Cartilage. 17(3), 328-335. https://doi.org/10.1016/j.joca.2008.07.010



Schlagwörter


AffymetrixAQP-1AQUAPORIN WATER CHANNELSCARTILAGEDAFDECAY-ACCELERATING FACTORDifferential gene expressionDNERFACTOR-BINDING-PROTEINSfibronectinHUMAN ARTICULAR CHONDROCYTESIFIGFBP-3INTACTLesionalOligonucleotide arrayosteoarthritisRNA extractionWHOLE-GENOMEWISP-1


Nachhaltigkeitsbezüge


Zuletzt aktualisiert 2025-10-06 um 09:47