Journalartikel
Autorenliste: Nguyen, Juliane; Xie, Xiulan; Neu, Michael; Dumitrascu, Rio; Reul, Regina; Sitterberg, Johannes; Bakowsky, Udo; Schermuly, Ralph; Fink, Ludger; Schmehl, Thomas; Gessler, Tobias; Seeger, Werner; Kissel, Thomas
Jahr der Veröffentlichung: 2008
Seiten: 1236-1246
Zeitschrift: The Journal of Gene Medicine
Bandnummer: 10
Heftnummer: 11
ISSN: 1099-498X
DOI Link: https://doi.org/10.1002/jgm.1255
Verlag: Wiley
Background Cell-penetrating peptides (CPPs) could potentially be used as vectors for intracellular delivery of proteins, peptides and nucleic acids. The present study examined different CPPs, such as TAT-derived and arginine rich sequences, as well as model amphiphilic peptide, with respect to transfection efficiency of pegylated polyethylenimine (PEI) in A549, Calu-3 cells and in mice after intra-tracheal administration. Methods The conjugates were prepared by the coupling of CPPs to PEI via a heterobifunctional polyethylene glycol (PEG) linker, resulting in the H-1-bioconjugates CPP-PEG-PEL Structures were successfully confirmed by d nuclear magnetic resonance and diffusion-ordered spectroscopy. Unmodifie PEI 25 kDa was compared with pegylated PEI, and aggregation tendency in cell culture medium, interaction with mucin and stability against heparin was assayed. After evaluating transfection efficiency of the polymers in two different lung cell lines, luciferase reporter gene expression was determined in mouse lungs. Results All conjugates showed superior transfection efficiency compared to unmodified PEI 25 kDa. The conjugates sizes were generally <300 nm, thus enabling them to penetrate through the mucus lining of the lung and reach the target cells. Coupling of CPPs to PEG-PEI, however, did not significantly improve transfection efficiency in A549 cells, calu-3 cells and in mouse lungs. Conclusions We show that small and stable polyplex size achieved by pegylation is favourable for successful pulmonary gene delivery. Compared to PEI 25 kDa, pegylated PEI and CPP-PEG-PEI displayed enhanced transfection efficiency both in vitro and in vivo. Copyright (C) 2008 John Wiley & Sons, Ltd.
Abstract:
Zitierstile
Harvard-Zitierstil: Nguyen, J., Xie, X., Neu, M., Dumitrascu, R., Reul, R., Sitterberg, J., et al. (2008) Effects of cell-penetrating peptides and pegylation on transfection efficiency of polyethylenimine in mouse lungs, The Journal of Gene Medicine, 10(11), pp. 1236-1246. https://doi.org/10.1002/jgm.1255
APA-Zitierstil: Nguyen, J., Xie, X., Neu, M., Dumitrascu, R., Reul, R., Sitterberg, J., Bakowsky, U., Schermuly, R., Fink, L., Schmehl, T., Gessler, T., Seeger, W., & Kissel, T. (2008). Effects of cell-penetrating peptides and pegylation on transfection efficiency of polyethylenimine in mouse lungs. The Journal of Gene Medicine. 10(11), 1236-1246. https://doi.org/10.1002/jgm.1255
Schlagwörter
cell-penetrating peptides; DOSY; GENE DELIVERY; HEPARAN-SULFATE; HIV-1 TAT PROTEIN; INTRACELLULAR DELIVERY; plasmid DNA; POLYETHYLENIMINE; pulmonary gene delivery; TRANSDUCTION DOMAIN