Journal article
Authors list: Kurz, T.; Chen, L.; Brieler, F. J.; Klar, P. J.; von Nidda, H. -A. Krug; Froeba, M.; Heimbrodt, W.; Loidl, A.
Publication year: 2008
Journal: Physical Review B
Volume number: 78
Issue number: 13
ISSN: 1098-0121
Open access status: Green
DOI Link: https://doi.org/10.1103/PhysRevB.78.132408
Publisher: American Physical Society
Abstract:
We have studied the paramagnetic-to-antiferromagnetic phase transition in spherical beta-MnS nanoparticles of well defined diameters in the range of 3-11 nm. The MnS nanoparticles were obtained by intrapore synthesis inside mesoporous silica matrices. Electron spin resonance and magnetization measurements reveal that no antiferromagnetic order is established in MnS spheres of 3 nm down to 2 K and that the antiferromagnetic order is gradually recovered on increasing the particle diameter to 11 nm. Photoluminescence excitation spectroscopy proves that in all MnS nanostructures the nearest-neighbor coupling between the Mn ions remains the same as in bulk suggesting that the suppression of the phase transition arises due to geometric restrictions alone.
Citation Styles
Harvard Citation style: Kurz, T., Chen, L., Brieler, F., Klar, P., von Nidda, H., Froeba, M., et al. (2008) Minimal number of atoms to constitute a magnet: Suppression of magnetic order in spherical MnS nanoparticles, Physical Review B, 78(13), Article 132408. https://doi.org/10.1103/PhysRevB.78.132408
APA Citation style: Kurz, T., Chen, L., Brieler, F., Klar, P., von Nidda, H., Froeba, M., Heimbrodt, W., & Loidl, A. (2008). Minimal number of atoms to constitute a magnet: Suppression of magnetic order in spherical MnS nanoparticles. Physical Review B. 78(13), Article 132408. https://doi.org/10.1103/PhysRevB.78.132408
Keywords
ANTIFERROMAGNETIC PHASE-TRANSITION; CD1-XMNXS; (CD,MN)S; CRITICAL-POINT; MCM-41; POLYMORPHIC FORMS