Journalartikel
Autorenliste: Djolovic, Ivana; Malkowsky, Eberhard
Jahr der Veröffentlichung: 2008
Seiten: 291-303
Zeitschrift: Journal of Mathematical Analysis and Applications
Bandnummer: 340
Heftnummer: 1
ISSN: 0022-247X
eISSN: 1096-0813
Open Access Status: Bronze
DOI Link: https://doi.org/10.1016/j.jmaa.2007.08.021
Verlag: Elsevier
Abstract:
We establish some identities or estimates for the operator norms and Hausdorff measures of noncompactness of linear operators given by infinite matrices that map the matrix domains of triangles in arbitrary BK spaces with AK, or in the spaces of all convergent or bounded sequences, into the spaces of all null, convergent or bounded sequences, or of all absolutely convergent series. Furthermore, we apply these results to the characterizations of compact operators on the matrix domains of triangles in the classical sequence spaces, and on the sequence spaces studied in [I. Djolovic, Compact operators on the spaces a(0)(r)(Delta) and a(c)(r)(Delta), J. Math. Anal. Appl. 318 (2) (2006) 658 - 666; 1. Djolovic, On the space of bounded Euler difference sequences and some classes of compact operators, Appl. Math. Comput. 182 (2) (2006) 1803 - 1811]. (c) 2007 Elsevier Inc. All rights reserved.
Zitierstile
Harvard-Zitierstil: Djolovic, I. and Malkowsky, E. (2008) A note on compact operators on matrix domains, Journal of Mathematical Analysis and Applications, 340(1), pp. 291-303. https://doi.org/10.1016/j.jmaa.2007.08.021
APA-Zitierstil: Djolovic, I., & Malkowsky, E. (2008). A note on compact operators on matrix domains. Journal of Mathematical Analysis and Applications. 340(1), 291-303. https://doi.org/10.1016/j.jmaa.2007.08.021
Schlagwörter
BK and AK spaces; compact operators; matrix domains; matrix transformations; measure of noncompactness; sequence spaces; SPACES
Nachhaltigkeitsbezüge