Journalartikel

Full rank positive matrix symbols: Interpolation and orthogonality


AutorenlisteConti, C.; Cotronei, M.; Sauer, T.

Jahr der Veröffentlichung2008

Seiten5-27

ZeitschriftBIT Numerical Mathematics

Bandnummer48

Heftnummer1

ISSN0006-3835

DOI Linkhttps://doi.org/10.1007/s10543-008-0162-3

VerlagSpringer


Abstract
We investigate full rank interpolatory vector subdivision schemes whose masks are positive definite on the unit circle except the point z=1. Such masks are known to give rise to convergent schemes with a cardinal limit function in the scalar case. In the full rank vector case, we show that there also exists a cardinal refinable function based on this mask, however, with respect to a different notion of refinability which nevertheless also leads to an iterative scheme for the computation of vector fields. Moreover, we show the existence of orthogonal scaling functions for multichannel wavelets and give a constructive method to obtain these scaling functions.



Zitierstile

Harvard-ZitierstilConti, C., Cotronei, M. and Sauer, T. (2008) Full rank positive matrix symbols: Interpolation and orthogonality, BIT Numerical Mathematics, 48(1), pp. 5-27. https://doi.org/10.1007/s10543-008-0162-3

APA-ZitierstilConti, C., Cotronei, M., & Sauer, T. (2008). Full rank positive matrix symbols: Interpolation and orthogonality. BIT Numerical Mathematics. 48(1), 5-27. https://doi.org/10.1007/s10543-008-0162-3



Schlagwörter


full rank schemesinterpolatory matrix refinable functionmatrix spectral factorizationrefinement equationSPECTRAL FACTORIZATIONSUBDIVISIONsubdivision schemesWAVELETS

Zuletzt aktualisiert 2025-02-04 um 03:35