Journal article

A generalization of Gram-Schmidt orthogonalization generating all Parseval frames


Authors listCasazza, Peter G.; Kutyniok, Gitta

Publication year2007

Pages65-78

JournalAdvances in Computational Mathematics

Volume number27

Issue number1

ISSN1019-7168

eISSN1572-9044

DOI Linkhttps://doi.org/10.1007/s10444-005-7478-1

PublisherSpringer


Abstract
Given an arbitrary finite sequence of vectors in a finite-dimensional Hilbert space, we describe an algorithm, which computes a Parseval frame for the subspace generated by the input vectors while preserving redundancy exactly. We further investigate several of its properties. Finally, we apply the algorithm to several numerical examples.



Citation Styles

Harvard Citation styleCasazza, P. and Kutyniok, G. (2007) A generalization of Gram-Schmidt orthogonalization generating all Parseval frames, Advances in Computational Mathematics, 27(1), pp. 65-78. https://doi.org/10.1007/s10444-005-7478-1

APA Citation styleCasazza, P., & Kutyniok, G. (2007). A generalization of Gram-Schmidt orthogonalization generating all Parseval frames. Advances in Computational Mathematics. 27(1), 65-78. https://doi.org/10.1007/s10444-005-7478-1



Keywords


ERASURESfinite-dimensional Hilbert spaceGram-Schmidt orthogonalizationlinear dependenceParseval frameREDUNDANCYTIGHT FRAMES

Last updated on 2025-02-04 at 03:44