Journal article
Authors list: Casazza, Peter G.; Kutyniok, Gitta
Publication year: 2007
Pages: 65-78
Journal: Advances in Computational Mathematics
Volume number: 27
Issue number: 1
ISSN: 1019-7168
eISSN: 1572-9044
DOI Link: https://doi.org/10.1007/s10444-005-7478-1
Publisher: Springer
Abstract:
Given an arbitrary finite sequence of vectors in a finite-dimensional Hilbert space, we describe an algorithm, which computes a Parseval frame for the subspace generated by the input vectors while preserving redundancy exactly. We further investigate several of its properties. Finally, we apply the algorithm to several numerical examples.
Citation Styles
Harvard Citation style: Casazza, P. and Kutyniok, G. (2007) A generalization of Gram-Schmidt orthogonalization generating all Parseval frames, Advances in Computational Mathematics, 27(1), pp. 65-78. https://doi.org/10.1007/s10444-005-7478-1
APA Citation style: Casazza, P., & Kutyniok, G. (2007). A generalization of Gram-Schmidt orthogonalization generating all Parseval frames. Advances in Computational Mathematics. 27(1), 65-78. https://doi.org/10.1007/s10444-005-7478-1
Keywords
ERASURES; finite-dimensional Hilbert space; Gram-Schmidt orthogonalization; linear dependence; Parseval frame; REDUNDANCY; TIGHT FRAMES