Journalartikel
Autorenliste: Gohout, Wolfgang; Specht, Katja
Jahr der Veröffentlichung: 2007
Seiten: 403-418
Zeitschrift: Statistical Papers
Bandnummer: 48
Heftnummer: 3
ISSN: 0932-5026
eISSN: 1613-9798
DOI Link: https://doi.org/10.1007/s00362-006-0344-5
Verlag: Springer
Abstract:
Portfolio optimization is very sensitive to the forecasts of returns and (co-)variances of the underlying assets, This paper applies a Bayesian vector-autoregression of the asset universe to predict the returns. Further, the co-variance matrix is forecasted by an Augmented GARCH estimation of the most volatile principle components of the return series. As an empirical illustration, the daily stock returns of the German stocks index DAX have been used to calculate some well-known mean-variance portfolios. Back-testing is used to evaluate the performance. The approach seems to be promising.
Zitierstile
Harvard-Zitierstil: Gohout, W. and Specht, K. (2007) Mean-variance portfolios using Bayesian vector-autoregressive forecasts, Statistical Papers, 48(3), pp. 403-418. https://doi.org/10.1007/s00362-006-0344-5
APA-Zitierstil: Gohout, W., & Specht, K. (2007). Mean-variance portfolios using Bayesian vector-autoregressive forecasts. Statistical Papers. 48(3), 403-418. https://doi.org/10.1007/s00362-006-0344-5
Schlagwörter
RETURN