Journalartikel

Mean-variance portfolios using Bayesian vector-autoregressive forecasts


AutorenlisteGohout, Wolfgang; Specht, Katja

Jahr der Veröffentlichung2007

Seiten403-418

ZeitschriftStatistical Papers

Bandnummer48

Heftnummer3

ISSN0932-5026

eISSN1613-9798

DOI Linkhttps://doi.org/10.1007/s00362-006-0344-5

VerlagSpringer


Abstract
Portfolio optimization is very sensitive to the forecasts of returns and (co-)variances of the underlying assets, This paper applies a Bayesian vector-autoregression of the asset universe to predict the returns. Further, the co-variance matrix is forecasted by an Augmented GARCH estimation of the most volatile principle components of the return series. As an empirical illustration, the daily stock returns of the German stocks index DAX have been used to calculate some well-known mean-variance portfolios. Back-testing is used to evaluate the performance. The approach seems to be promising.



Zitierstile

Harvard-ZitierstilGohout, W. and Specht, K. (2007) Mean-variance portfolios using Bayesian vector-autoregressive forecasts, Statistical Papers, 48(3), pp. 403-418. https://doi.org/10.1007/s00362-006-0344-5

APA-ZitierstilGohout, W., & Specht, K. (2007). Mean-variance portfolios using Bayesian vector-autoregressive forecasts. Statistical Papers. 48(3), 403-418. https://doi.org/10.1007/s00362-006-0344-5



Schlagwörter


RETURN

Zuletzt aktualisiert 2025-02-04 um 06:27