Journalartikel

A redundant version of the Rado-Horn Theorem


AutorenlisteCasazza, Peter G.; Kutyniok, Gitta; Speegle, Darrin

Jahr der Veröffentlichung2006

Seiten1-10

ZeitschriftLinear Algebra and its Applications

Bandnummer418

Heftnummer1

ISSN0024-3795

eISSN1873-1856

Open Access StatusBronze

DOI Linkhttps://doi.org/10.1016/j.laa.2006.01.010

VerlagElsevier


Abstract
The Rado-Horn Theorem gives a characterization of those sets of vectors which can be written as the union of a fixed number of linearly independent sets. In this paper, we study the redundant case. We show that then the span of the vectors can be written as the direct sum of a subspace which directly fails the Rado-Horn criteria and a subspace for which the Rado-Horn criteria hold. As a corollary, we characterize those sets of vectors, which, after the deletion of a fixed number of vectors, can be written as the finite union of linearly independent sets. (c) 2006 Elsevier Inc. All rights reserved.



Zitierstile

Harvard-ZitierstilCasazza, P., Kutyniok, G. and Speegle, D. (2006) A redundant version of the Rado-Horn Theorem, Linear Algebra and its Applications, 418(1), pp. 1-10. https://doi.org/10.1016/j.laa.2006.01.010

APA-ZitierstilCasazza, P., Kutyniok, G., & Speegle, D. (2006). A redundant version of the Rado-Horn Theorem. Linear Algebra and its Applications. 418(1), 1-10. https://doi.org/10.1016/j.laa.2006.01.010



Schlagwörter


partition into linearly independent setsRado-Horn theoremredundant system

Zuletzt aktualisiert 2025-10-06 um 09:39