Journalartikel

Nuclear collective motion with a coherent coupling interaction between quadrupole and octupole modes


AutorenlisteMinkov, N; Yotov, P; Drenska, S; Scheid, W; Bonatsos, D; Lenis, D; Petrellis, D

Jahr der Veröffentlichung2006

ZeitschriftPhysical Review C

Bandnummer73

Heftnummer4

ISSN0556-2813

eISSN1089-490X

Open Access StatusGreen

DOI Linkhttps://doi.org/10.1103/PhysRevC.73.044315

VerlagAmerican Physical Society


Abstract
A collective Hamiltonian for the rotation-vibration motion of nuclei is considered in which the axial quadrupole and octupole degrees of freedom are coupled through the centrifugal interaction. The potential of the system depends on the two deformation variables beta(2) and beta(3). The system is considered to oscillate between positive and negative beta(3) values by rounding an infinite potential core in the (beta(2),beta(3)) plane with beta(2)> 0. By assuming a coherent contribution of the quadrupole and octupole oscillation modes in the collective motion, the energy spectrum is derived in an explicit analytic form, providing specific parity shift effects. On this basis several possible ways in the evolution of quadrupole-octupole collectivity are outlined. A particular application of the model to the energy levels and electric transition probabilities in alternating parity spectra of the nuclei Nd-150, Sm-152, Gd-154, and Dy-156 is presented.



Zitierstile

Harvard-ZitierstilMinkov, N., Yotov, P., Drenska, S., Scheid, W., Bonatsos, D., Lenis, D., et al. (2006) Nuclear collective motion with a coherent coupling interaction between quadrupole and octupole modes, Physical Review C, 73(4), Article 044315. https://doi.org/10.1103/PhysRevC.73.044315

APA-ZitierstilMinkov, N., Yotov, P., Drenska, S., Scheid, W., Bonatsos, D., Lenis, D., & Petrellis, D. (2006). Nuclear collective motion with a coherent coupling interaction between quadrupole and octupole modes. Physical Review C. 73(4), Article 044315. https://doi.org/10.1103/PhysRevC.73.044315



Schlagwörter


DEFORMATIONSELECTRIC-DIPOLE MOMENTSEVEN-EVEN

Zuletzt aktualisiert 2025-10-06 um 09:38