Journalartikel
Autorenliste: Kutyniok, G; Strohmer, T
Jahr der Veröffentlichung: 2005
Seiten: 685-711
Zeitschrift: SIAM Journal on Mathematical Analysis
Bandnummer: 37
Heftnummer: 3
ISSN: 0036-1410
eISSN: 1095-7154
Open Access Status: Green
DOI Link: https://doi.org/10.1137/S003614100343723X
Verlag: Society for Industrial and Applied Mathematics
Abstract:
Motivated by a recent generalization of the Balian-Low theorem and by new research in wireless communications, we analyze the construction of Wilson bases for general time-frequency lattices. We show that orthonormal Wilson bases for L-2(R) can be constructed for any time-frequency lattice whose volume is 1/2. We then focus on the spaces L-2(Z) and C-L which are the preferred settings for numerical and practical purposes. We demonstrate that with a properly adapted definition of Wilson bases the construction of orthonormal Wilson bases for general time-frequency lattices also holds true in these discrete settings. In our analysis we make use of certain metaplectic transforms. Finally, we discuss some practical consequences of our theoretical findings.
Zitierstile
Harvard-Zitierstil: Kutyniok, G. and Strohmer, T. (2005) Wilson bases for general time-frequency lattices, SIAM Journal on Mathematical Analysis, 37(3), pp. 685-711. https://doi.org/10.1137/S003614100343723X
APA-Zitierstil: Kutyniok, G., & Strohmer, T. (2005). Wilson bases for general time-frequency lattices. SIAM Journal on Mathematical Analysis. 37(3), 685-711. https://doi.org/10.1137/S003614100343723X
Schlagwörter
BALIAN-LOW THEOREM; Gabor frame; metaplectic transform; Schrodinger representation; time-frequency lattice; TRANSFORM; Wilson basis