Journalartikel

Wilson bases for general time-frequency lattices


AutorenlisteKutyniok, G; Strohmer, T

Jahr der Veröffentlichung2005

Seiten685-711

ZeitschriftSIAM Journal on Mathematical Analysis

Bandnummer37

Heftnummer3

ISSN0036-1410

eISSN1095-7154

Open Access StatusGreen

DOI Linkhttps://doi.org/10.1137/S003614100343723X

VerlagSociety for Industrial and Applied Mathematics


Abstract
Motivated by a recent generalization of the Balian-Low theorem and by new research in wireless communications, we analyze the construction of Wilson bases for general time-frequency lattices. We show that orthonormal Wilson bases for L-2(R) can be constructed for any time-frequency lattice whose volume is 1/2. We then focus on the spaces L-2(Z) and C-L which are the preferred settings for numerical and practical purposes. We demonstrate that with a properly adapted definition of Wilson bases the construction of orthonormal Wilson bases for general time-frequency lattices also holds true in these discrete settings. In our analysis we make use of certain metaplectic transforms. Finally, we discuss some practical consequences of our theoretical findings.



Zitierstile

Harvard-ZitierstilKutyniok, G. and Strohmer, T. (2005) Wilson bases for general time-frequency lattices, SIAM Journal on Mathematical Analysis, 37(3), pp. 685-711. https://doi.org/10.1137/S003614100343723X

APA-ZitierstilKutyniok, G., & Strohmer, T. (2005). Wilson bases for general time-frequency lattices. SIAM Journal on Mathematical Analysis. 37(3), 685-711. https://doi.org/10.1137/S003614100343723X



Schlagwörter


BALIAN-LOW THEOREMGabor framemetaplectic transformSchrodinger representationtime-frequency latticeTRANSFORMWilson basis

Zuletzt aktualisiert 2025-10-06 um 09:37