Konferenzpaper
Autorenliste: Cotronei, M; Lo Cascio, ML; Sauer, T
Jahr der Veröffentlichung: 2004
Seiten: 497-510
Zeitschrift: Applied Numerical Mathematics
Bandnummer: 51
Heftnummer: 4
ISSN: 0168-9274
eISSN: 1873-5460
DOI Link: https://doi.org/10.1016/j.apnum.2004.06.006
Konferenz: 2nd Meeting on Applied Scientific Computing and Tools
Verlag: Elsevier
Abstract:
We consider the construction of dual filters with a prescribed approximation order, that is with the ability to reproduce polynomials up to a certain degree. Specifically, we illustrate how to construct nonnegative duals when starting from a nonnegative primal filter. This construction produces filters with rational symbol, which can then be either implemented efficiently as recursive IIR filter or approximated by a Laurent polynomial. (C) 2004 IMACS. Published by Elsevier B.V. All rights reserved.
Zitierstile
Harvard-Zitierstil: Cotronei, M., Lo Cascio, M. and Sauer, T. (2004) Dual non-negative rational symbols with arbitrary approximation order, Applied Numerical Mathematics, 51(4), pp. 497-510. https://doi.org/10.1016/j.apnum.2004.06.006
APA-Zitierstil: Cotronei, M., Lo Cascio, M., & Sauer, T. (2004). Dual non-negative rational symbols with arbitrary approximation order. Applied Numerical Mathematics. 51(4), 497-510. https://doi.org/10.1016/j.apnum.2004.06.006
Schlagwörter
Bezout identity; dual filters; FILTERS; non-negative symbol; rational symbols