Journal article
Authors list: Malkowsky, E; Rakocevic, V; Zivkovic, S
Publication year: 2004
Pages: 377-396
Journal: Applied Mathematics and Computation
Volume number: 147
Issue number: 2
ISSN: 0096-3003
eISSN: 1873-5649
DOI Link: https://doi.org/10.1016/S0096-3003(02)00674-4
Publisher: Elsevier
Abstract:
In this paper, we determine the beta-duals of the sets w(0)(p)(Lambda), v(0)(p)(Lambda) and c(0)(p)(Lambda) for exponentially bounded sequences A. Furthermore, we characterize matrix transformations between the sequence spaces w(0)(p)(Lambda), v(0)(p)(Lambda), c(0)(p)(Lambda) (1 < p < infinity) and certain BK spaces. Finally, we apply the Hausdorff measure of noncompactness to give necessary and sufficient conditions for a linear operator between these spaces to be compact. (C) 2002 Elsevier Inc. All rights reserved.
Citation Styles
Harvard Citation style: Malkowsky, E., Rakocevic, V. and Zivkovic, S. (2004) Matrix transformations between the sequence spaces wp0(Λ), vp0(Λ), cp0(Λ) (1 < p < ∞) and certain BK spaces, Applied Mathematics and Computation, 147(2), pp. 377-396. https://doi.org/10.1016/S0096-3003(02)00674-4
APA Citation style: Malkowsky, E., Rakocevic, V., & Zivkovic, S. (2004). Matrix transformations between the sequence spaces wp0(Λ), vp0(Λ), cp0(Λ) (1 < p < ∞) and certain BK spaces. Applied Mathematics and Computation. 147(2), 377-396. https://doi.org/10.1016/S0096-3003(02)00674-4
Keywords
matrix transformations; measure of noncompactness
SDG Areas