Konferenzpaper

Multivariate refinable functions of high approximation order via quotient ideals of Laurent polynomials


AutorenlisteMöller, HM; Sauer, T

Jahr der Veröffentlichung2004

Seiten205-228

ZeitschriftAdvances in Computational Mathematics

Bandnummer20

Heftnummer1-3

ISSN1019-7168

eISSN1572-9044

DOI Linkhttps://doi.org/10.1023/A:1025889132677

KonferenzInternational Workshop on Multivariate Approximation and Interpolation with Applications

VerlagSpringer


Abstract
We give an algebraic interpretation of the well-known "zero-condition" or "sum rule" for multivariate refinable functions with respect to an arbitrary scaling matrix. The main result is a characterization of these properties in terms of containment in a quotient ideal, however not in the ring of polynomials but in the ring of Laurent polynomials.



Zitierstile

Harvard-ZitierstilMöller, H. and Sauer, T. (2004) Multivariate refinable functions of high approximation order via quotient ideals of Laurent polynomials, Advances in Computational Mathematics, 20(1-3), pp. 205-228. https://doi.org/10.1023/A:1025889132677

APA-ZitierstilMöller, H., & Sauer, T. (2004). Multivariate refinable functions of high approximation order via quotient ideals of Laurent polynomials. Advances in Computational Mathematics. 20(1-3), 205-228. https://doi.org/10.1023/A:1025889132677



Schlagwörter


Grobner basesLaurent polynomialsquotient idealssubdivision

Zuletzt aktualisiert 2025-01-04 um 23:21