Konferenzpaper
Autorenliste: Möller, HM; Sauer, T
Jahr der Veröffentlichung: 2004
Seiten: 205-228
Zeitschrift: Advances in Computational Mathematics
Bandnummer: 20
Heftnummer: 1-3
ISSN: 1019-7168
eISSN: 1572-9044
DOI Link: https://doi.org/10.1023/A:1025889132677
Konferenz: International Workshop on Multivariate Approximation and Interpolation with Applications
Verlag: Springer
Abstract:
We give an algebraic interpretation of the well-known "zero-condition" or "sum rule" for multivariate refinable functions with respect to an arbitrary scaling matrix. The main result is a characterization of these properties in terms of containment in a quotient ideal, however not in the ring of polynomials but in the ring of Laurent polynomials.
Zitierstile
Harvard-Zitierstil: Möller, H. and Sauer, T. (2004) Multivariate refinable functions of high approximation order via quotient ideals of Laurent polynomials, Advances in Computational Mathematics, 20(1-3), pp. 205-228. https://doi.org/10.1023/A:1025889132677
APA-Zitierstil: Möller, H., & Sauer, T. (2004). Multivariate refinable functions of high approximation order via quotient ideals of Laurent polynomials. Advances in Computational Mathematics. 20(1-3), 205-228. https://doi.org/10.1023/A:1025889132677
Schlagwörter
Grobner bases; Laurent polynomials; quotient ideals; subdivision