Conference paper
Authors list: Hofmann, DM; Romanov, NG; Gehlhoff, W; Pfisterer, D; Meyer, BK; Azamat, D; Hoffmann, A
Publication year: 2003
Pages: 978-981
Journal: Physica B: Condensed Matter
Volume number: 340
ISSN: 0921-4526
DOI Link: https://doi.org/10.1016/j.physb.2003.09.170
Conference: 22nd International Conference on Defects in Semiconductors (ICDS-22)
Publisher: Elsevier
Abstract:
In order to investigate the defects responsible for the sub-band-gap absorption in ZnGeP2 optically detected magnetic resonance (ODMR) using the magnetic circular dichroism of the absorption (MCDA) as detection channel was applied. This is the first ODMR study of defects in II-IV-V-2 chalcopyrites. The experiments exhibit that three different native defects contribute to the absorption in the spectral range from 0.5 eV to the band-gap energy of about 2.0 eV. The Ge antisite defects show a dominant transition near the band edge. Zn vacancies show strong MCD above 1.6 eV and below 1 eV, and the P vacancies are detected over the complete spectral range. In combination with photoinduced EPR studies these results reveal the contributions of the different defects to the broad absorption band. Peculiarities in the MCD of the Zn-vacancies are explained in terms of long spin-lattice relaxation times. (C) 2003 Elsevier B.V. All rights reserved.
Citation Styles
Harvard Citation style: Hofmann, D., Romanov, N., Gehlhoff, W., Pfisterer, D., Meyer, B., Azamat, D., et al. (2003) Optically detected magnetic resonance experiments on native defects in ZnGeP2, Physica B: Condensed Matter, 340, pp. 978-981. https://doi.org/10.1016/j.physb.2003.09.170
APA Citation style: Hofmann, D., Romanov, N., Gehlhoff, W., Pfisterer, D., Meyer, B., Azamat, D., & Hoffmann, A. (2003). Optically detected magnetic resonance experiments on native defects in ZnGeP2. Physica B: Condensed Matter. 340, 978-981. https://doi.org/10.1016/j.physb.2003.09.170
Keywords
ELECTRON-PARAMAGNETIC-RESONANCE; intrinsic defects; Magnetic resonance; PARAMETRIC OSCILLATOR; ZINC GERMANIUM DIPHOSPHIDE; ZnGeP2