Journalartikel
Autorenliste: Buhmann, MD; Davydov, O; Goodman, TNT
Jahr der Veröffentlichung: 2003
Seiten: 113-133
Zeitschrift: Foundations of Computational Mathematics
Bandnummer: 3
Heftnummer: 2
ISSN: 1615-3375
DOI Link: https://doi.org/10.1007/s10208-002-0054-x
Verlag: Springer
Abstract:
In this paper. we design differentiable, two-dimensional, piecewise polynomial cubic prewavelets of particularly small compact support. They are given in closed form, and provide stable, orthogonal decompositions of L-2(R-2). In particular. the splines we use in our prewavelet constructions give rise to stable bases of spline spaces that contain all cubic polynomials, whereas the more familiar box spline constructions cannot reproduce all cubic polynomials. unless resorting to a box spline of higher polynomial degree.
Zitierstile
Harvard-Zitierstil: Buhmann, M., Davydov, O. and Goodman, T. (2003) Cubic spline prewavelets on the four-directional mesh, Foundations of Computational Mathematics, 3(2), pp. 113-133. https://doi.org/10.1007/s10208-002-0054-x
APA-Zitierstil: Buhmann, M., Davydov, O., & Goodman, T. (2003). Cubic spline prewavelets on the four-directional mesh. Foundations of Computational Mathematics. 3(2), 113-133. https://doi.org/10.1007/s10208-002-0054-x
Schlagwörter
4-DIRECTIONAL MESH; BASES