Journalartikel

Cubic spline prewavelets on the four-directional mesh


AutorenlisteBuhmann, MD; Davydov, O; Goodman, TNT

Jahr der Veröffentlichung2003

Seiten113-133

ZeitschriftFoundations of Computational Mathematics

Bandnummer3

Heftnummer2

ISSN1615-3375

DOI Linkhttps://doi.org/10.1007/s10208-002-0054-x

VerlagSpringer


Abstract
In this paper. we design differentiable, two-dimensional, piecewise polynomial cubic prewavelets of particularly small compact support. They are given in closed form, and provide stable, orthogonal decompositions of L-2(R-2). In particular. the splines we use in our prewavelet constructions give rise to stable bases of spline spaces that contain all cubic polynomials, whereas the more familiar box spline constructions cannot reproduce all cubic polynomials. unless resorting to a box spline of higher polynomial degree.



Zitierstile

Harvard-ZitierstilBuhmann, M., Davydov, O. and Goodman, T. (2003) Cubic spline prewavelets on the four-directional mesh, Foundations of Computational Mathematics, 3(2), pp. 113-133. https://doi.org/10.1007/s10208-002-0054-x

APA-ZitierstilBuhmann, M., Davydov, O., & Goodman, T. (2003). Cubic spline prewavelets on the four-directional mesh. Foundations of Computational Mathematics. 3(2), 113-133. https://doi.org/10.1007/s10208-002-0054-x



Schlagwörter


4-DIRECTIONAL MESHBASES

Zuletzt aktualisiert 2025-02-04 um 04:18